3 research outputs found

    Hardware Prototype for Wrist-Worn Simultaneous Monitoring of Environmental, Behavioral, and Physiological Parameters

    Get PDF
    We designed a low-cost wrist-worn prototype for simultaneously measuring environmental, behavioral, and physiological domains of influencing factors in healthcare. Our prototype continuously monitors ambient elements (sound level, toxic gases, ultraviolet radiation, air pressure, temperature, and humidity), personal activity (motion tracking and body positioning using gyroscope, magnetometer, and accelerometer), and vital signs (skin temperature and heart rate). An innovative three-dimensional hardware, based on the multi-physical-layer approach is introduced. Using board-to-board connectors, several physical hardware layers are stacked on top of each other. All of these layers consist of integrated and/or add-on sensors to measure certain domain (environmental, behavioral, or physiological). The prototype includes centralized data processing, transmission, and visualization. Bi-directional communication is based on Bluetooth Low Energy (BLE) and can connect to smartphones as well as smart cars and smart homes for data analytic and adverse-event alerts. This study aims to develop a prototype for simultaneous monitoring of the all three areas for monitoring of workplaces and chronic obstructive pulmonary disease (COPD) patients with a concentration on technical development and validation rather than clinical investigation. We have implemented 6 prototypes which have been tested by 5 volunteers. We have asked the subjects to test the prototype in a daily routine in both indoor (workplaces and laboratories) and outdoor. We have not imposed any specific conditions for the tests. All presented data in this work are from the same prototype. Eleven sensors measure fifteen parameters from three domains. The prototype delivers the resolutions of 0.1 part per million (PPM) for air quality parameters, 1 dB, 1 index, and 1 °C for sound pressure level, UV, and skin temperature, respectively. The battery operates for 12.5 h under the maximum sampling rates of sensors without recharging. The final expense does not exceed 133€. We validated all layers and tested the entire device with a 75 min recording. The results show the appropriate functionalities of the prototype for further development and investigations

    A Multi-Source Harvesting System Applied to Sensor-Based Smart Garments for Monitoring Workers’ Bio-Physical Parameters in Harsh Environments

    Get PDF
    This paper describes the development and characterization of a smart garment for monitoring the environmental and biophysical parameters of the user wearing it; the wearable application is focused on the control to workers’ conditions in dangerous workplaces in order to prevent or reduce the consequences of accidents. The smart jacket includes flexible solar panels, thermoelectric generators and flexible piezoelectric harvesters to scavenge energy from the human body, thus ensuring the energy autonomy of the employed sensors and electronic boards. The hardware and firmware optimization allowed the correct interfacing of the heart rate and SpO2 sensor, accelerometers, temperature and electrochemical gas sensors with a modified Arduino Pro mini board. The latter stores and processes the sensor data and, in the event of abnormal parameters, sends an alarm to a cloud database, allowing company managers to check them via a web app. The characterization of the harvesting subsection has shown that ≈ 265 mW maximum power can be obtained in a real scenario, whereas the power consumption due to the acquisition, processing and BLE data transmission functions determined that a 10 mAh/day charge is required to ensure the device’s proper operation. By charging a 380 mAh Lipo battery in a few hours by means of the harvesting system, an energy autonomy of 23 days was obtained, in the absence of any further energy contribution

    Personalized ambient parameters monitoring: design and implementing of a wrist-worn prototype for hazardous gases and sound level detection

    Get PDF
    The concentration is on “3D space utilization” as the concept and infrastructure of designing of a wearable in ambient parameters monitoring. This strategy is implemented according to “multi-layer” approach. In this approach, each group of parameters from the same category is monitored by a modular physical layer enriched with the respected sensors. Depending on the number of parameters and layers, each physical layer is located on top of another. The intention is to implement a device for “everyone in everywhere for everything”
    corecore