16,345 research outputs found

    Downlink Video Streaming for Users Non-Equidistant from Base Station

    Get PDF
    We consider multiuser video transmission for users that are non-equidistantly positioned from base station. We propose a greedy algorithm for video streaming in a wireless system with capacity achieving channel coding, that implements the cross-layer principle by partially separating the physical and the application layer. In such a system the parameters at the physical layer are dependent on the packet length and the conditions in the wireless channel and the parameters at the application layer are dependent on the reduction of the expected distortion assuming no packet errors in the system. We also address the fairness in the multiuser video system with non-equidistantly positioned users. Our fairness algorithm is based on modified opportunistic round robin scheduling. We evaluate the performance of the proposed algorithms by simulating the transmission of H.264/AVC video signals in a TDMA wireless system

    Enabling Quality-Driven Scalable Video Transmission over Multi-User NOMA System

    Full text link
    Recently, non-orthogonal multiple access (NOMA) has been proposed to achieve higher spectral efficiency over conventional orthogonal multiple access. Although it has the potential to meet increasing demands of video services, it is still challenging to provide high performance video streaming. In this research, we investigate, for the first time, a multi-user NOMA system design for video transmission. Various NOMA systems have been proposed for data transmission in terms of throughput or reliability. However, the perceived quality, or the quality-of-experience of users, is more critical for video transmission. Based on this observation, we design a quality-driven scalable video transmission framework with cross-layer support for multi-user NOMA. To enable low complexity multi-user NOMA operations, a novel user grouping strategy is proposed. The key features in the proposed framework include the integration of the quality model for encoded video with the physical layer model for NOMA transmission, and the formulation of multi-user NOMA-based video transmission as a quality-driven power allocation problem. As the problem is non-concave, a global optimal algorithm based on the hidden monotonic property and a suboptimal algorithm with polynomial time complexity are developed. Simulation results show that the proposed multi-user NOMA system outperforms existing schemes in various video delivery scenarios.Comment: 9 pages, 6 figures. This paper has already been accepted by IEEE INFOCOM 201
    corecore