4 research outputs found

    Thermodynamic graph-rewriting

    Get PDF
    We develop a new thermodynamic approach to stochastic graph-rewriting. The ingredients are a finite set of reversible graph-rewriting rules called generating rules, a finite set of connected graphs P called energy patterns and an energy cost function. The idea is that the generators define the qualitative dynamics, by showing which transformations are possible, while the energy patterns and cost function specify the long-term probability π\pi of any reachable graph. Given the generators and energy patterns, we construct a finite set of rules which (i) has the same qualitative transition system as the generators; and (ii) when equipped with suitable rates, defines a continuous-time Markov chain of which π\pi is the unique fixed point. The construction relies on the use of site graphs and a technique of `growth policy' for quantitative rule refinement which is of independent interest. This division of labour between the qualitative and long-term quantitative aspects of the dynamics leads to intuitive and concise descriptions for realistic models (see the examples in S4 and S5). It also guarantees thermodynamical consistency (AKA detailed balance), otherwise known to be undecidable, which is important for some applications. Finally, it leads to parsimonious parameterizations of models, again an important point in some applications

    Rate Equations for Graphs

    Get PDF
    In this paper, we combine ideas from two different scientific traditions: 1) graph transformation systems (GTSs) stemming from the theory of formal languages and concurrency, and 2) mean field approximations (MFAs), a collection of approximation techniques ubiquitous in the study of complex dynamics. Using existing tools from algebraic graph rewriting, as well as new ones, we build a framework which generates rate equations for stochastic GTSs and from which one can derive MFAs of any order (no longer limited to the humanly computable). The procedure for deriving rate equations and their approximations can be automated. An implementation and example models are available online at https://rhz.github.io/fragger. We apply our techniques and tools to derive an expression for the mean velocity of a two-legged walker protein on DNA.Comment: to be presented at the 18th International Conference on Computational Methods in Systems Biology (CMSB 2020

    Moment Semantics for Reversible Rule-Based Systems

    Get PDF
    International audienceWe develop a notion of stochastic rewriting over marked graphs – i.e. directed multigraphs with degree constraints. The approach is based on double-pushout (DPO) graph rewriting. Marked graphs are expressive enough to internalize the 'no-dangling-edge' condition inherent in DPO rewriting. Our main result is that the linear span of marked graph occurrence-counting functions – or motif functions – form an algebra which is closed under the infinitesimal generator of (the Markov chain associated with) any such rewriting system. This gives a general procedure to derive the moment semantics of any such rewriting system, as a countable (and recursively enumerable) system of differential equations indexed by motif functions. The differential system describes the time evolution of moments (of any order) of these motif functions under the rewriting system. We illustrate the semantics using the example of preferential attachment networks; a well-studied complex system, which meshes well with our notion of marked graph rewriting. We show how in this case our procedure obtains a finite description of all moments of degree counts for a fixed degree

    Rate Equations for Graphs

    Get PDF
    International audienceIn this paper, we combine ideas from two different scientifictraditions: 1) graph transformation systems (GTSs) stemming from thetheory of formal languages and concurrency, and 2) mean field approx-imations (MFAs), a collection of approximation techniques ubiquitousin the study of complex dynamics. Using existing tools from algebraicgraph rewriting, as well as new ones, we build a framework which gener-ates rate equations for stochastic GTSs and from which one can deriveMFAs of any order (no longer limited to the humanly computable). Theprocedure for deriving rate equations and their approximations can beautomated. An implementation and example models are available onlineat https://rhz.github.io/fragger. We apply our techniques and tools toderive an expression for the mean velocity of a two-legged walker proteinon DNA
    corecore