64,165 research outputs found

    New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic

    Get PDF
    Intuitionistic logic, in which the double negation law not-not-P = P fails, is dominant in categorical logic, notably in topos theory. This paper follows a different direction in which double negation does hold. The algebraic notions of effect algebra/module that emerged in theoretical physics form the cornerstone. It is shown that under mild conditions on a category, its maps of the form X -> 1+1 carry such effect module structure, and can be used as predicates. Predicates are identified in many different situations, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting, idempotents in a ring, and effects (positive elements below the unit) in a C*-algebra or Hilbert space. In quantum foundations the duality between states and effects plays an important role. It appears here in the form of an adjunction, where we use maps 1 -> X as states. For such a state s and a predicate p, the validity probability s |= p is defined, as an abstract Born rule. It captures many forms of (Boolean or probabilistic) validity known from the literature. Measurement from quantum mechanics is formalised categorically in terms of `instruments', using L\"uders rule in the quantum case. These instruments are special maps associated with predicates (more generally, with tests), which perform the act of measurement and may have a side-effect that disturbs the system under observation. This abstract description of side-effects is one of the main achievements of the current approach. It is shown that in the special case of C*-algebras, side-effect appear exclusively in the non-commutative case. Also, these instruments are used for test operators in a dynamic logic that can be used for reasoning about quantum programs/protocols. The paper describes four successive assumptions, towards a categorical axiomatisation of quantitative logic for probabilistic and quantum systems

    Maximum efficiency of a linear-optical Bell-state analyzer

    Get PDF
    In a photonic realization of qubits the implementation of quantum logic is rather difficult due the extremely weak interaction on the few photon level. On the other hand, in these systems interference is available to process the quantum states. We formalize the use of interference by the definition of a simple class of operations which include linear optical elements, auxiliary states and conditional operations. We investigate an important subclass of these tools, namely linear optical elements and auxiliary modes in the vacuum state. For this tools, we are able to extend a previous quantitative result, a no-go theorem for perfect Bell state analyzer on two qubits in polarization entanglement, by a quantitative statement. We show, that within this subclass it is not possible to discriminate unambiguously four equiprobable Bell states with a probability higher than 50 %.Comment: 6 pages, 2 fig

    Alternative fast quantum logic gates using nonadiabatic Landau-Zener-St\"{u}ckelberg-Majorana transitions

    Full text link
    A conventional realization of quantum logic gates and control is based on resonant Rabi oscillations of the occupation probability of the system. This approach has certain limitations and complications, like counter-rotating terms. We study an alternative paradigm for implementing quantum logic gates based on Landau-Zener-St\"{u}ckelberg-Majorana (LZSM) interferometry with non-resonant driving and the alternation of adiabatic evolution and non-adiabatic transitions. Compared to Rabi oscillations, the main differences are a non-resonant driving frequency and a small number of periods in the external driving. We explore the dynamics of a multilevel quantum system under LZSM drives and optimize the parameters for increasing single- and two-qubit gates speed. We define the parameters of the external driving required for implementing some specific gates using the adiabatic-impulse model. The LZSM approach can be applied to a large variety of multi-level quantum systems and external driving, providing a method for implementing quantum logic gates on them.Comment: 15 pages, 12 figure
    corecore