5,846 research outputs found

    CVABS: Moving Object Segmentation with Common Vector Approach for Videos

    Full text link
    Background modelling is a fundamental step for several real-time computer vision applications that requires security systems and monitoring. An accurate background model helps detecting activity of moving objects in the video. In this work, we have developed a new subspace based background modelling algorithm using the concept of Common Vector Approach with Gram-Schmidt orthogonalization. Once the background model that involves the common characteristic of different views corresponding to the same scene is acquired, a smart foreground detection and background updating procedure is applied based on dynamic control parameters. A variety of experiments is conducted on different problem types related to dynamic backgrounds. Several types of metrics are utilized as objective measures and the obtained visual results are judged subjectively. It was observed that the proposed method stands successfully for all problem types reported on CDNet2014 dataset by updating the background frames with a self-learning feedback mechanism.Comment: 12 Pages, 4 Figures, 1 Tabl

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    Full text link
    People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-art algorithms on challenging scenes

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Spatio-temporal Video Parsing for Abnormality Detection

    Get PDF
    Abnormality detection in video poses particular challenges due to the infinite size of the class of all irregular objects and behaviors. Thus no (or by far not enough) abnormal training samples are available and we need to find abnormalities in test data without actually knowing what they are. Nevertheless, the prevailing concept of the field is to directly search for individual abnormal local patches or image regions independent of another. To address this problem, we propose a method for joint detection of abnormalities in videos by spatio-temporal video parsing. The goal of video parsing is to find a set of indispensable normal spatio-temporal object hypotheses that jointly explain all the foreground of a video, while, at the same time, being supported by normal training samples. Consequently, we avoid a direct detection of abnormalities and discover them indirectly as those hypotheses which are needed for covering the foreground without finding an explanation for themselves by normal samples. Abnormalities are localized by MAP inference in a graphical model and we solve it efficiently by formulating it as a convex optimization problem. We experimentally evaluate our approach on several challenging benchmark sets, improving over the state-of-the-art on all standard benchmarks both in terms of abnormality classification and localization.Comment: 15 pages, 12 figures, 3 table

    Evaluating Example-based Pose Estimation: Experiments on the HumanEva Sets

    Get PDF
    We present an example-based approach to pose recovery, using histograms of oriented gradients as image descriptors. Tests on the HumanEva-I and HumanEva-II data sets provide us insight into the strengths and limitations of an example-based approach. We report mean relative 3D errors of approximately 65 mm per joint on HumanEva-I, and 175 mm on HumanEva-II. We discuss our results using single and multiple views. Also, we perform experiments to assess the algorithm’s generalization to unseen subjects, actions and viewpoints. We plan to incorporate the temporal aspect of human motion analysis to reduce orientation ambiguities, and increase the pose recovery accuracy

    Convolutional neural network architecture for geometric matching

    Get PDF
    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.Comment: In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017
    • 

    corecore