63 research outputs found

    Cross-layer H.264 scalable video downstream delivery over WLANs

    Get PDF
    Thanks to its in-network drop-based adaptation capabilities, H.264 Scalable Video Coding is perceived as an effective approach for delivering video over networks characterized by sudden large bandwidth fluctuations, such as Wireless LANs. Performance may be boosted by the adoption of application-aware/cross-layer schedulers devised to intelligently drop video data units (NALUs), so that i) decoding dependencies are preserved, and ii) the quality perceived by the end users is maximized. In this paper, we provide a theoretical formulation of a QoE utility-optimal cross-layer scheduling problem for H.264 SVC downlink delivery over WLANs. We show that, because of the unique characteristics of the WLAN MAC operation, this problem significantly differs from related approaches proposed for scheduled wireless technologies, especially when the WLAN carries background traffic in the uplink direction. From these theoretical insights, we derive, design, implement and experimentally assess a simple practical scheduling algorithm, whose performance is very close to the optimal solution

    Experimental Evaluation of Large Scale WiFi Multicast Rate Control

    Full text link
    WiFi multicast to very large groups has gained attention as a solution for multimedia delivery in crowded areas. Yet, most recently proposed schemes do not provide performance guarantees and none have been tested at scale. To address the issue of providing high multicast throughput with performance guarantees, we present the design and experimental evaluation of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. MuDRA relies on feedback from some nodes collected via a light-weight protocol and dynamically adjusts the rate adaptation response time. Our experimental evaluation of MuDRA on the ORBIT testbed with over 150 nodes shows that MuDRA outperforms other schemes and supports high throughput multicast flows to hundreds of receivers while meeting quality requirements. MuDRA can support multiple high quality video streams, where 90% of the nodes report excellent or very good video quality

    Power Efficient MISO Beamforming for Secure Layered Transmission

    Full text link
    This paper studies secure layered video transmission in a multiuser multiple-input single-output (MISO) beamforming downlink communication system. The power allocation algorithm design is formulated as a non-convex optimization problem for minimizing the total transmit power while guaranteeing a minimum received signal-to-interference-plus-noise ratio (SINR) at the desired receiver. In particular, the proposed problem formulation takes into account the self-protecting architecture of layered transmission and artificial noise generation to prevent potential information eavesdropping. A semi-definite programming (SDP) relaxation based power allocation algorithm is proposed to obtain an upper bound solution. A sufficient condition for the global optimal solution is examined to reveal the tightness of the upper bound solution. Subsequently, two suboptimal power allocation schemes with low computational complexity are proposed for enabling secure layered video transmission. Simulation results demonstrate significant transmit power savings achieved by the proposed algorithms and layered transmission compared to the baseline schemes.Comment: Accepted for presentation at the IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 201

    Resource Allocation Frameworks for Network-coded Layered Multimedia Multicast Services

    Get PDF
    The explosive growth of content-on-the-move, such as video streaming to mobile devices, has propelled research on multimedia broadcast and multicast schemes. Multi-rate transmission strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions. In this paper, we consider Point-to-Multipoint layered service delivery across a generic cellular system and improve it by applying different random linear network coding approaches. We derive packet error probability expressions and use them as performance metrics in the formulation of resource allocation frameworks. The aim of these frameworks is both the optimization of the transmission scheme and the minimization of the number of broadcast packets on each downlink channel, while offering service guarantees to a predetermined fraction of users. As a case of study, our proposed frameworks are then adapted to the LTE-A standard and the eMBMS technology. We focus on the delivery of a video service based on the H.264/SVC standard and demonstrate the advantages of layered network coding over multi-rate transmission. Furthermore, we establish that the choice of both the network coding technique and resource allocation method play a critical role on the network footprint, and the quality of each received video layer.Comment: IEEE Journal on Selected Areas in Communications - Special Issue on Fundamental Approaches to Network Coding in Wireless Communication Systems. To appea

    Secure Layered Transmission in Multicast Systems with Wireless Information and Power Transfer

    Full text link
    This paper considers downlink multicast transmit beamforming for secure layered transmission systems with wireless simultaneous information and power transfer. We study the power allocation algorithm design for minimizing the total transmit power in the presence of passive eavesdroppers and energy harvesting receivers. The algorithm design is formulated as a non-convex optimization problem. Our problem formulation promotes the dual use of energy signals in providing secure communication and facilitating efficient energy transfer. Besides, we take into account a minimum required power for energy harvesting at the idle receivers and heterogeneous quality of service (QoS) requirements for the multicast video receivers. In light of the intractability of the problem, we reformulate the considered problem by replacing a non-convex probabilistic constraint with a convex deterministic constraint. Then, a semidefinite programming relaxation (SDR) approach is adopted to obtain an upper solution for the reformulated problem. Subsequently, sufficient conditions for the global optimal solution of the reformulated problem are revealed. Furthermore, we propose two suboptimal power allocation schemes based on the upper bound solution. Simulation results demonstrate the excellent performance and significant transmit power savings achieved by the proposed schemes compared to isotropic energy signal generation.Comment: 7 pages, 3 figures, accepted for presentation at the IEEE International Conference on Communications (ICC), Sydney, Australia, 201

    Quality of service provision in mobile multimedia - a survey

    Full text link
    The prevalence of multimedia applications has drastically increased the amount of multimedia data. With the drop of the hardware cost, more and more mobile devices with higher capacities are now used. The widely deployed wireless LAN and broadband wireless networks provide the ubiquitous network access for multimedia applications. Provision of Quality of Service (QoS) is challenging in mobile ad hoc networks because of the dynamic characteristics of mobile networks and the limited resources of the mobile devices. The wireless network is not reliable due to node mobility, multi-access channel and multi-hop communication. In this paper, we provide a survey of QoS provision in mobile multimedia, addressing the technologies at different network layers and cross-layer design. This paper focuses on the QoS techniques over IEEE 802.11e networks. We also provide some thoughts about the challenges and directions for future research

    The Effective Transmission and Processing of Mobile Multimedia

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore