5 research outputs found

    A linear-time algorithm for finding a complete graph minor in a dense graph

    Full text link
    Let g(t) be the minimum number such that every graph G with average degree d(G) \geq g(t) contains a K_{t}-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that g(t) \in \Theta(t*sqrt{log t}). This article shows that for all fixed \epsilon > 0 and fixed sufficiently large t \geq t(\epsilon), if d(G) \geq (2+\epsilon)g(t) then we can find this K_{t}-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when d(G) \geq 2^{t-2}.Comment: 6 pages, 0 figures; Clarification added in several places, no change to arguments or result

    Small Complete Minors Above the Extremal Edge Density

    Full text link
    A fundamental result of Mader from 1972 asserts that a graph of high average degree contains a highly connected subgraph with roughly the same average degree. We prove a lemma showing that one can strengthen Mader's result by replacing the notion of high connectivity by the notion of vertex expansion. Another well known result in graph theory states that for every integer t there is a smallest real c(t) so that every n-vertex graph with c(t)n edges contains a K_t-minor. Fiorini, Joret, Theis and Wood conjectured that if an n-vertex graph G has (c(t)+\epsilon)n edges then G contains a K_t-minor of order at most C(\epsilon)log n. We use our extension of Mader's theorem to prove that such a graph G must contain a K_t-minor of order at most C(\epsilon)log n loglog n. Known constructions of graphs with high girth show that this result is tight up to the loglog n factor

    A linear-time algorithm for finding a complete graph minor in a dense graph

    No full text
    Let g(t) be the minimum number such that every graph G with average degree d(G) = g(t) contains a Kt-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that g(t) and T(t√log t). This paper shows that for all fixed and < 0 and fixed sufficiently large t = t(and), if d(G) = (2 + and)g(t), then we can find this Kt-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when d(G) = 2t-2. © 2013 Society for Industrial and Applied Mathematics.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Παραμετρικοί - Προσεγγιστικοί Αλγόριθμοι και Ιδιότητες Erdős-Pósa σε Γραφήματα

    Get PDF
    Η διατριβή αυτή επικεντρώνεται στη μελέτη παραμετρικών προσεγγιστικών αλγορίθμων που σχετίζονται με γραφήματα κολοκύθες. Χρησιμοποιώντας μία γενικευμένη προσέγγιση (που μπορεί να επεκταθεί και σε πιο γενικές κλάσεις γραφημάτων) σχεδιάζουμε αλγορίθμους που ανιχνεύουν μοντέλα κολοκυθών και που χτυπούν μοντέλα κολοκυθών σε μεγάλα γραφήματα. Στηριζόμενοι σε αυτούς τους αλγορίθμους αποδεικνύουμε ιδιότητες τύπου Erdős-Pósa ως προς κορυφές και ακμές για τις κλάσεις των κολοκυθών και των διπλών κολοκυθών· για την πρώτη βελτιώνουμε υπάρχοντα αποτελέσματα ενώ για τη δεύτερη παρέχουμε τα πρώτα του είδους τους. Στην πορεία προς τούτο, γενικεύουμε προηγούμενα αποτέλεσματα που παρέχουν συνθήκες οι οποίες εξαναγκάζουν την ύπαρξη μιας ελάσσονος κλίκας εκθετικού μεγέθους μέσα σε ένα μεγαλύτερο γράφημα-φορέα.This thesis is centred around the study of parameterized approximation algorithms related to pumpkin graphs. Using a generalised approach (which could be expanded to other graph classes) we design algorithms that find pumpkin models and hit pumpkin models in large graphs. Based on these algorithms we prove Erdős-Pósa- like results, both for vertices and edges, for the classes of pumpkins and double pumpkins; for the former we improve previous results and for the latter we provide the first such results. As a necessary step in our process, but of independent value, we generalise previous results that provide conditions which force the existence of a clique of exponential size as a minor inside a larger host-graph
    corecore