7,972 research outputs found

    A linear-time algorithm for constructing a circular visibility diagram

    Full text link
    To computer circular visibility inside a simple polygon, circular arcs that emanate from a given interior point are classified with respect to the edges of the polygon they first intersect. Representing these sets of circular arcs by their centers results in a planar partition called the circular visibility diagram. An O(n) algorithm is given for constructing the circular visibility diagram for a simple polygon with n vertices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41346/1/453_2005_Article_BF01206329.pd

    Finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple polygon in linear time

    Get PDF
    In this paper, we present a Θ(n) time worst-case deterministic algorithm for finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple n-sided polygon in the plane. Up to now, only an O(n log n) worst-case deterministic and an O(n) expected time bound have been shown, leaving an O(n) deterministic solution open to conjecture.published_or_final_versio

    The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination

    Get PDF
    We introduce the Voronoi Diagram of Rotating Rays, a Voronoi structure where the input sites are rays, and the distance function is the counterclockwise angular distance between a point and a ray-site. This novel Voronoi diagram is motivated by illumination and coverage problems, where a domain has to be covered by floodlights (wedges) of uniform angle, and the goal is to find the minimum angle necessary to cover the domain. We study the diagram in the plane, and we present structural properties, combinatorial complexity bounds, and a construction algorithm. If the rays are induced by a convex polygon, we show how to construct the ray Voronoi diagram within this polygon in linear time. Using this information, we can find in optimal linear time the Brocard angle, the minimum angle required to illuminate a convex polygon with floodlights of uniform angle. This last algorithm improves upon previous results, settling an interesting open problem

    A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters

    Full text link
    In the Hausdorff Voronoi diagram of a family of \emph{clusters of points} in the plane, the distance between a point tt and a cluster PP is measured as the maximum distance between tt and any point in PP, and the diagram is defined in a nearest-neighbor sense for the input clusters. In this paper we consider %El."non-crossing" \emph{non-crossing} clusters in the plane, for which the combinatorial complexity of the Hausdorff Voronoi diagram is linear in the total number of points, nn, on the convex hulls of all clusters. We present a randomized incremental construction, based on point location, that computes this diagram in expected O(nlog2n)O(n\log^2{n}) time and expected O(n)O(n) space. Our techniques efficiently handle non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions. The diagram finds direct applications in VLSI computer-aided design.Comment: arXiv admin note: substantial text overlap with arXiv:1306.583

    An Efficient Algorithm for Computing High-Quality Paths amid Polygonal Obstacles

    Full text link
    We study a path-planning problem amid a set O\mathcal{O} of obstacles in R2\mathbb{R}^2, in which we wish to compute a short path between two points while also maintaining a high clearance from O\mathcal{O}; the clearance of a point is its distance from a nearest obstacle in O\mathcal{O}. Specifically, the problem asks for a path minimizing the reciprocal of the clearance integrated over the length of the path. We present the first polynomial-time approximation scheme for this problem. Let nn be the total number of obstacle vertices and let ε(0,1]\varepsilon \in (0,1]. Our algorithm computes in time O(n2ε2lognε)O(\frac{n^2}{\varepsilon ^2} \log \frac{n}{\varepsilon}) a path of total cost at most (1+ε)(1+\varepsilon) times the cost of the optimal path.Comment: A preliminary version of this work appear in the Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithm

    Essential Constraints of Edge-Constrained Proximity Graphs

    Full text link
    Given a plane forest F=(V,E)F = (V, E) of V=n|V| = n points, we find the minimum set SES \subseteq E of edges such that the edge-constrained minimum spanning tree over the set VV of vertices and the set SS of constraints contains FF. We present an O(nlogn)O(n \log n )-time algorithm that solves this problem. We generalize this to other proximity graphs in the constraint setting, such as the relative neighbourhood graph, Gabriel graph, β\beta-skeleton and Delaunay triangulation. We present an algorithm that identifies the minimum set SES\subseteq E of edges of a given plane graph I=(V,E)I=(V,E) such that ICGβ(V,S)I \subseteq CG_\beta(V, S) for 1β21 \leq \beta \leq 2, where CGβ(V,S)CG_\beta(V, S) is the constraint β\beta-skeleton over the set VV of vertices and the set SS of constraints. The running time of our algorithm is O(n)O(n), provided that the constrained Delaunay triangulation of II is given.Comment: 24 pages, 22 figures. A preliminary version of this paper appeared in the Proceedings of 27th International Workshop, IWOCA 2016, Helsinki, Finland. It was published by Springer in the Lecture Notes in Computer Science (LNCS) serie

    Most vital segment barriers

    Get PDF
    We study continuous analogues of "vitality" for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of "most vital arcs" for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases
    corecore