4 research outputs found

    Control of DC Motor Using Integral State Feedback and Comparison with PID: Simulation and Arduino Implementation

    Get PDF
    The Direct Current (DC) motor is widely applied in various implementations. The main problem in the DC motor is controlling the angular speed on the specific reference. This research then proposed an integral state feedback design for tracking control in DC motor, with Simulink Matlab simulation and the Arduino hardware implementation. The results will be compared with the implementation of the PID controller. The integral state feedback controller can handle the system to reach the setpoint with good performance in the simulations, even with changing different poles and setpoints. In the hardware implementation, the current sensor (INA219) and encoder sensor are used since all state variables need to be calculated. Based on the result, the controller can reach the setpoint stably with oscillation. Similar results are showed in simulations with different setpoints. Compared with the PID Controller, the integral state feedback controller has a better response with faster rise time and faster settling time

    High-performance control for a permanent-magnet linear synchronous generator using state feedback control scheme plus grey wolf optimisation

    Full text link
    © 2020 The Institution of Engineering and Technology. This study proposes an optimal control scheme for a permanent-magnet linear synchronous generator (PMLSG) using the state feedback control (SFC) method plus the grey wolf optimisation (GWO) algorithm. First, A novel state-space model of linear PMLSG is established in order to obtain desired dynamics and enough power when used for the smooth wave energy. Second, the GWO algorithm is adopted to acquire weighting matrices Q and R in the process of optimising linear quadratic regulator (LQR). What is more, a penalty term is brought into the fitness index to reduce the overstrike of output voltage and keep the rate of work more stable. Finally, optimal LQR-based SFC with and without penalty term and proportional-integral (PI) controllers are compared both in simulations and in experiments. Results clearly prove that the proposed optimal control strategy performs a better response when compared to other strategies

    Field Oriented Sliding Mode Control of Surface-Mounted Permanent Magnet AC Motors: Theory and Applications to Electrified Vehicles

    Get PDF
    Permanent magnet ac motors have been extensively utilized for adjustable-speed traction motor drives, due to their inherent advantages including higher power density, superior efficiency and reliability, more precise and rapid torque control, larger power factor, longer bearing, and insulation life-time. Without any proportional-and-integral (PI) controllers, this paper introduces novel first- and higher-order field-oriented sliding mode control schemes. Compared with the traditional PI-based vector control techniques, it is shown that the proposed field oriented sliding mode control methods improve the dynamic torque and speed response, and enhance the robustness to parameter variations, modeling uncertainties, and external load perturbations. While both first- and higher-order controllers display excellent performance, computer simulations show that the higher-order field-oriented sliding mode scheme offers better performance by reducing the chattering phenomenon, which is presented in the first-order scheme. The higher-order field-oriented sliding mode controller, based on the hierarchical use of supertwisting algorithm, is then implemented with a Texas Instruments TMS320F28335 DSP hardware platform to prototype the surface-mounted permanent magnet ac motor drive. Last, computer simulation studies demonstrate that the proposed field-oriented sliding mode control approach is able to effectively meet the speed and torque requirements of a heavy-duty electrified vehicle during the EPA urban driving schedule

    Modelagem dinâmica e acionamento de atuadores eletromagnétcos lineares de imãs permanentes

    Get PDF
    Este trabalho apresenta um estudo teórico, computacional e experimental sobre o desempenho dinâmico e o acionamento elétrico de atuadores lineares síncronos de ímãs permanentes. Inicialmente, uma modelagem dinâmica genérica de atuadores lineares é realizada no referencial trifásico e em função do número de condutores ativos da armadura. Assim, o modelo proposto é diretamente aplicável em máquinas com topologias planas ou tubulares e para diversos arranjos de ímãs permanentes utilizados no sistema de excitação de campo. Na sequência, através de uma transformação de coordenadas, um modelo não linear é expresso no referencial bifásico síncrono. A seguir, esse modelo é linearizado em torno de um ponto de operação. Um atuador de topologia tubular é escolhido para validação da modelagem matemática. Simulações computacionais via método de elementos finitos e testes experimentais são realizados, sendo os resultados obtidos comparados aos fornecidos pelos modelos analíticos desenvolvidos. Dessa forma, o equacionamento apresentado é validado no domínio do tempo e no domínio da frequência. Por fim, um acionamento em malha fechada baseado em orientação de campo é implementado no atuador tubular. Os ganhos proporcional e integral do controlador são calculados a partir da resposta temporal desejada e da constante de força do dispositivo.This work presents a theoretical, computational and experimental study on the dynamic performance and the electric drive of linear permanent magnet synchronous actuators. For this purpose, a generic dynamic modeling of linear actuators is performed initially on the three-phase reference frame as a function of the number of active conductors in the armature. Thus, the proposed model is directly applicable in flat or tubular machines with different arrangement of end magnets used in the field excitation system. Then, by a coordinate transformation, a non-linear model is expressed in the synchronous reference frame. This model is then linearized around an operating point. A tubular topology was chosen to validate the mathematical modeling. Numerical simulations using finite element method and experimental tests are performed and their results are compared to analytical models. Thus, the presented modeling is validated both in the time domain and in the frequency domain. Finally, a closed loop electric drive based on field orientation is implemented in the tubular actuator. The controller gains are calculated by means of the desired time response and the force constant of the device
    corecore