2 research outputs found

    Improved Operational Matrices of DP-Ball Polynomials for Solving Singular Second Order Linear Dirichlet-type Boundary Value Problems

    Get PDF
    Solving Dirichlet-type boundary value problems (BVPs) using a novel numerical approach is presented in this study. The operational matrices of DP-Ball Polynomials are used to solve the linear second-order BVPs. The modification of the operational matrix eliminates the BVP\u27s singularity. Consequently, guaranteeing a solution is reached. In this article, three different examples were taken into consideration in order to demonstrate the applicability of the method. Based on the findings, it seems that the methodology may be used effectively to provide accurate solutions

    Ball surface representations using partial differential equations

    Get PDF
    Over two decades ago, geometric modelling using partial differential equations (PDEs) approach was widely studied in Computer Aided Geometric Design (CAGD). This approach was initially introduced by some researchers to deal with Bèzier surface related to the minimal surface area determined by prescribed boundary curves. However, Bèzier surface representation can be improved in terms of computation time and minimal surface area by employing Ball surface representation. Thus, this research develops an algorithm to generalise Ball surfaces from boundary curves using elliptic PDEs. Two specific Ball surfaces, namely harmonic and biharmonic, are first constructed in developing the proposed algorithm. The former and later surfaces require two and four boundary conditions respectively. In order to generalise Ball surfaces in the polynomial solution of any fourth order PDEs, the Dirichlet method is then employed. The numerical results obtained on well-known example of data points show that the proposed generalised Ball surfaces algorithm performs better than BCzier surface representation in terms of computation time and minimal surface area. Moreover, the new constructed algorithm also holds for any surfaces in CAGD including the Bèzier surface. This algorithm is then tested in positivity preserving of surface and image enlargement problems. The results show that the proposed algorithm is comparable with the existing methods in terms of accuracy. Hence, this new algorithm is a viable alternative for constructing generalized Ball surfaces. The findings of this study contribute towards the body of knowledge for surface reconstruction based on PDEs approach in the area of geometric modelling and computer graphics
    corecore