20 research outputs found

    There and Back Again: Self-supervised Multispectral Correspondence Estimation

    Full text link
    Across a wide range of applications, from autonomous vehicles to medical imaging, multi-spectral images provide an opportunity to extract additional information not present in color images. One of the most important steps in making this information readily available is the accurate estimation of dense correspondences between different spectra. Due to the nature of cross-spectral images, most correspondence solving techniques for the visual domain are simply not applicable. Furthermore, most cross-spectral techniques utilize spectra-specific characteristics to perform the alignment. In this work, we aim to address the dense correspondence estimation problem in a way that generalizes to more than one spectrum. We do this by introducing a novel cycle-consistency metric that allows us to self-supervise. This, combined with our spectra-agnostic loss functions, allows us to train the same network across multiple spectra. We demonstrate our approach on the challenging task of dense RGB-FIR correspondence estimation. We also show the performance of our unmodified network on the cases of RGB-NIR and RGB-RGB, where we achieve higher accuracy than similar self-supervised approaches. Our work shows that cross-spectral correspondence estimation can be solved in a common framework that learns to generalize alignment across spectra

    Algorithms for multi-frame image super-resolution under applicative noise based on deep neural networks

    Get PDF
    Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ построСния ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π΄Ρ€ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ²Π΅Ρ€Ρ…Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Π²ΠΎΡΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒ изобраТСния с высоким Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π·Π° счСт накоплСния ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ с Π½ΠΈΠ·ΠΊΠΈΠΌ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π² условиях Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΠΌΠ΅Ρ…. ВоздСйствиС Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΠΌΠ΅Ρ… проявляСтся Π² появлСнии Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… участков Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… наблюдСний Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ являСтся Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ пониТСния Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. РСшСнию Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ Π΄ΠΎ настоящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡƒΠ΄Π΅Π»ΡΠ»ΠΎΡΡŒ нСдостаточно внимания, ΠΏΡ€ΠΈ этом пСрспСктивным ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ построСниС ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π΄Ρ€ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ²Π΅Ρ€Ρ…Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, являСтся использованиС Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, основанный Π½Π° использовании Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… свёрточных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ рассматриваСмого ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π½Π° Π΅Π³ΠΎ основС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² являСтся Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π²Ρ…ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ с Π½ΠΈΠ·ΠΊΠΈΠΌ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… этапах ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€Π°Ρ†ΠΈΡŽ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ ΠΈ выявлСниС участков, ΠΏΠΎΡ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΏΠΎΠΌΠ΅Ρ…Π°ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ прСобразования, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ нСпосрСдствСнно Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π”Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ позволяСт ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ стороны ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² ΠΈ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΈΡ… основныС нСдостатки, связанныС с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ использования ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π΄Π°Π½Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ для синтСза Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… статистичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. Для обновлСния Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ изобраТСния высокого Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ свёрточная нСйронная ΡΠ΅Ρ‚ΡŒ, организованная Π² Π²ΠΈΠ΄Π΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ацикличСского Π³Ρ€Π°Ρ„Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования, показавшиС Ρ€Π°Π±ΠΎΡ‚ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΈ Π΅Π³ΠΎ прСимущСство ΠΏΠΎ точности восстановлСния изобраТСния с высоким Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°ΠΌΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ

    RAFT: Recurrent All-Pairs Field Transforms for Optical Flow

    Full text link
    We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D correlation volumes for all pairs of pixels, and iteratively updates a flow field through a recurrent unit that performs lookups on the correlation volumes. RAFT achieves state-of-the-art performance. On KITTI, RAFT achieves an F1-all error of 5.10%, a 16% error reduction from the best published result (6.10%). On Sintel (final pass), RAFT obtains an end-point-error of 2.855 pixels, a 30% error reduction from the best published result (4.098 pixels). In addition, RAFT has strong cross-dataset generalization as well as high efficiency in inference time, training speed, and parameter count. Code is available at https://github.com/princeton-vl/RAFT.Comment: fixed a formatting issue, Eq 7. no change in conten

    Probabilistic Pixel-Adaptive Refinement Networks

    Full text link
    Encoder-decoder networks have found widespread use in various dense prediction tasks. However, the strong reduction of spatial resolution in the encoder leads to a loss of location information as well as boundary artifacts. To address this, image-adaptive post-processing methods have shown beneficial by leveraging the high-resolution input image(s) as guidance data. We extend such approaches by considering an important orthogonal source of information: the network's confidence in its own predictions. We introduce probabilistic pixel-adaptive convolutions (PPACs), which not only depend on image guidance data for filtering, but also respect the reliability of per-pixel predictions. As such, PPACs allow for image-adaptive smoothing and simultaneously propagating pixels of high confidence into less reliable regions, while respecting object boundaries. We demonstrate their utility in refinement networks for optical flow and semantic segmentation, where PPACs lead to a clear reduction in boundary artifacts. Moreover, our proposed refinement step is able to substantially improve the accuracy on various widely used benchmarks.Comment: To appear at CVPR 202
    corecore