105 research outputs found

    Securing IoT Attacks: A Machine Learning Approach for Developing Lightweight Trust-Based Intrusion Detection System

    Get PDF
    The routing process in the Internet of Things (IoT) presents challenges in industrial applications due to its complexity, involving multiple devices, critical decision-making, and accurate data transmission. The complexity further increases with dynamic IoT devices, which creates opportunities for potential intruders to disrupt routing. Traditional security measures are inadequate for IoT devices with limited battery capabilities. Although RPL (Routing Protocol for Low Energy and Lossy Networks) is commonly used for IoT routing, it remains vulnerable to security threats. This study aims to detect and isolate three routing attacks on RPL: Rank, Sybil, and Wormhole. To achieve this, a lightweight trust-based secured routing system is proposed, utilizing machine learning techniques to derive values for devices in new networks, where initial trust values are unavailable. The system demonstrates successful detection and isolation of attacks, achieving an accuracy of 98.59%, precision of 98%, recall of 99%, and f-score of 98%, thereby reinforcing its effectiveness. Attacker nodes are identified and promptly disabled, ensuring a secure routing environment. Validation on a generated dataset further confirms the reliability of the system

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology

    Assessing the Impact of Mobile Attackers on RPL-based Internet of Things

    Full text link
    The Internet of Things (IoT) is becoming ubiquitous in our daily life. IoT networks that are made up of devices low power, low memory, and low computing capability appears in many applications such as healthcare, home, agriculture. IPv6 Routing Protocol for Low Power and Lossy Network (RPL) has become a standardized routing protocol for such low-power and lossy networks in IoT. RPL establishes the best routes between devices according to the requirements of the application, which is achieved by the Objective Function (OF). Even though some security mechanisms are defined for external attackers in its RFC, RPL is vulnerable to attacks coming from inside. Moreover, the same attacks could has different impacts on networks with different OFs. Therefore, an analysis of such attacks becomes important in order to develop suitable security solutions for RPL. This study analyze RPL-specific attacks on networks using RPL's default OFs, namely Objective Function Zero (OF0) and the Minimum Rank with Hysteresis Objective Function (MRHOF). Moreover, mobile attackers could affect more nodes in a network due to their mobility. While the security solutions proposed in the literature assume that the network is static, this study takes into account mobile attackers.Comment: 11 pages,3 figures, Journa

    A Survey on Layer-Wise Security Attacks in IoT: Attacks, Countermeasures, and Open-Issues

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Security is a mandatory issue in any network, where sensitive data are transferred safely in the required direction. Wireless sensor networks (WSNs) are the networks formed in hostile areas for different applications. Whatever the application, the WSNs must gather a large amount of sensitive data and send them to an authorized body, generally a sink. WSN has integrated with Internet-of-Things (IoT) via internet access in sensor nodes along with internet-connected devices. The data gathered with IoT are enormous, which are eventually collected by WSN over the Internet. Due to several resource constraints, it is challenging to design a secure sensor network, and for a secure IoT it is essential to have a secure WSN. Most of the traditional security techniques do not work well for WSN. The merger of IoT and WSN has opened new challenges in designing a secure network. In this paper, we have discussed the challenges of creating a secure WSN. This research reviews the layer-wise security protocols for WSN and IoT in the literature. There are several issues and challenges for a secure WSN and IoT, which we have addressed in this research. This research pinpoints the new research opportunities in the security issues of both WSN and IoT. This survey climaxes in abstruse psychoanalysis of the network layer attacks. Finally, various attacks on the network using Cooja, a simulator of ContikiOS, are simulated.Peer reviewe

    Internet of Things for system integrity: a comprehensive survey on security, attacks and countermeasures for industrial applications

    Get PDF
    The growth of the Internet of Things (IoT) offers numerous opportunities for developing industrial applications such as smart grids, smart cities, smart manufacturers, etc. By utilising these opportunities, businesses engage in creating the Industrial Internet of Things (IIoT). IoT is vulnerable to hacks and, therefore, requires various techniques to achieve the level of security required. Furthermore, the wider implementation of IIoT causes an even greater security risk than its benefits. To provide a roadmap for researchers, this survey discusses the integrity of industrial IoT systems and highlights the existing security approaches for the most significant industrial applications. This paper mainly classifies the attacks and possible security solutions regarding IoT layers architecture. Consequently, each attack is connected to one or more layers of the architecture accompanied by a literature analysis on the various IoT security countermeasures. It further provides a critical analysis of the existing IoT/IIoT solutions based on different security mechanisms, including communications protocols, networking, cryptography and intrusion detection systems. Additionally, there is a discussion of the emerging tools and simulations used for testing and evaluating security mechanisms in IoT applications. Last, this survey outlines several other relevant research issues and challenges for IoT/IIoT security
    • …
    corecore