582 research outputs found

    Towards Discriminative Representations with Contrastive Instances for Real-Time UAV Tracking

    Full text link
    Maintaining high efficiency and high precision are two fundamental challenges in UAV tracking due to the constraints of computing resources, battery capacity, and UAV maximum load. Discriminative correlation filters (DCF)-based trackers can yield high efficiency on a single CPU but with inferior precision. Lightweight Deep learning (DL)-based trackers can achieve a good balance between efficiency and precision but performance gains are limited by the compression rate. High compression rate often leads to poor discriminative representations. To this end, this paper aims to enhance the discriminative power of feature representations from a new feature-learning perspective. Specifically, we attempt to learn more disciminative representations with contrastive instances for UAV tracking in a simple yet effective manner, which not only requires no manual annotations but also allows for developing and deploying a lightweight model. We are the first to explore contrastive learning for UAV tracking. Extensive experiments on four UAV benchmarks, including UAV123@10fps, DTB70, UAVDT and VisDrone2018, show that the proposed DRCI tracker significantly outperforms state-of-the-art UAV tracking methods.Comment: arXiv admin note: substantial text overlap with arXiv:2308.1026

    FEAR: Fast, Efficient, Accurate and Robust Visual Tracker

    Full text link
    We present FEAR, a family of fast, efficient, accurate, and robust Siamese visual trackers. We present a novel and efficient way to benefit from dual-template representation for object model adaption, which incorporates temporal information with only a single learnable parameter. We further improve the tracker architecture with a pixel-wise fusion block. By plugging-in sophisticated backbones with the abovementioned modules, FEAR-M and FEAR-L trackers surpass most Siamese trackers on several academic benchmarks in both accuracy and efficiency. Employed with the lightweight backbone, the optimized version FEAR-XS offers more than 10 times faster tracking than current Siamese trackers while maintaining near state-of-the-art results. FEAR-XS tracker is 2.4x smaller and 4.3x faster than LightTrack with superior accuracy. In addition, we expand the definition of the model efficiency by introducing FEAR benchmark that assesses energy consumption and execution speed. We show that energy consumption is a limiting factor for trackers on mobile devices. Source code, pretrained models, and evaluation protocol are available at https://github.com/PinataFarms/FEARTracker

    Good Features to Correlate for Visual Tracking

    Full text link
    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.Comment: Accepted version of IEEE Transactions on Image Processin

    SiamLST: Learning Spatial and Channel-wise Transform for Visual Tracking

    Get PDF
    Siamese network based trackers regard visual tracking as a similarity matching task between the target template and search region patches, and achieve a good balance between accuracy and speed in recent years. However, existing trackers do not effectively exploit the spatial and inter-channel cues, which lead to the redundancy of pre-trained model parameters. In this paper, we design a novel visual tracker based on a Learnable Spatial and Channel-wise Transform in Siamese network (SiamLST). The SiamLST tracker includes a powerful feature extraction backbone and an efficient cross-correlation method. The proposed algorithm takes full advantages of CNN and the learnable sparse transform module to represent the template and search patches, which effectively exploit the spatial and channel-wise correlations to deal with complicated scenarios, such as motion blur, in-plane rotation and partial occlusion. Experimental results conducted on multiple tracking benchmarks including OTB2015, VOT2016, GOT-10k and VOT2018 demonstrate that the proposed SiamLST has excellent tracking performances

    Learning Disentangled Representation with Mutual Information Maximization for Real-Time UAV Tracking

    Full text link
    Efficiency has been a critical problem in UAV tracking due to limitations in computation resources, battery capacity, and unmanned aerial vehicle maximum load. Although discriminative correlation filters (DCF)-based trackers prevail in this field for their favorable efficiency, some recently proposed lightweight deep learning (DL)-based trackers using model compression demonstrated quite remarkable CPU efficiency as well as precision. Unfortunately, the model compression methods utilized by these works, though simple, are still unable to achieve satisfying tracking precision with higher compression rates. This paper aims to exploit disentangled representation learning with mutual information maximization (DR-MIM) to further improve DL-based trackers' precision and efficiency for UAV tracking. The proposed disentangled representation separates the feature into an identity-related and an identity-unrelated features. Only the latter is used, which enhances the effectiveness of the feature representation for subsequent classification and regression tasks. Extensive experiments on four UAV benchmarks, including UAV123@10fps, DTB70, UAVDT and VisDrone2018, show that our DR-MIM tracker significantly outperforms state-of-the-art UAV tracking methods
    corecore