4,416 research outputs found

    Semantic Web meets Web 2.0 (and vice versa): The Value of the Mundane for the Semantic Web

    No full text
    Web 2.0, not the Semantic Web, has become the face of “the next generation Web” among the tech-literate set, and even among many in the various research communities involved in the Web. Perceptions in these communities of what the Semantic Web is (and who is involved in it) are often misinformed if not misguided. In this paper we identify opportunities for Semantic Web activities to connect with the Web 2.0 community; we explore why this connection is of significant benefit to both groups, and identify how these connections open valuable research opportunities “in the real” for the Semantic Web effort

    Learning to predict distributions of words across domains

    Get PDF
    Although the distributional hypothesis has been applied successfully in many natural language processing tasks, systems using distributional information have been limited to a single domain because the distribution of a word can vary between domains as the word’s predominant meaning changes. However, if it were possible to predict how the distribution of a word changes from one domain to another, the predictions could be used to adapt a system trained in one domain to work in another. We propose an unsupervised method to predict the distribution of a word in one domain, given its distribution in another domain. We evaluate our method on two tasks: cross-domain part-of-speech tagging and cross-domain sentiment classification. In both tasks, our method significantly outperforms competitive baselines and returns results that are statistically comparable to current state-of-the-art methods, while requiring no task-specific customisations

    A lightweight web video model with content and context descriptions for integration with linked data

    Get PDF
    The rapid increase of video data on the Web has warranted an urgent need for effective representation, management and retrieval of web videos. Recently, many studies have been carried out for ontological representation of videos, either using domain dependent or generic schemas such as MPEG-7, MPEG-4, and COMM. In spite of their extensive coverage and sound theoretical grounding, they are yet to be widely used by users. Two main possible reasons are the complexities involved and a lack of tool support. We propose a lightweight video content model for content-context description and integration. The uniqueness of the model is that it tries to model the emerging social context to describe and interpret the video. Our approach is grounded on exploiting easily extractable evolving contextual metadata and on the availability of existing data on the Web. This enables representational homogeneity and a firm basis for information integration among semantically-enabled data sources. The model uses many existing schemas to describe various ontology classes and shows the scope of interlinking with the Linked Data cloud

    Lightweight Ontologies

    Get PDF
    Ontologies are explicit specifications of conceptualizations. They are often thought of as directed graphs whose nodes represent concepts and whose edges represent relations between concepts. The notion of concept is understood as defined in Knowledge Representation, i.e., as a set of objects or individuals. This set is called the concept extension or the concept interpretation. Concepts are often lexically defined, i.e., they have natural language names which are used to describe the concept extensions (e.g., concept mother denotes the set of all female parents). Therefore, when ontologies are visualized, their nodes are often shown with corresponding natural language concept names. The backbone structure of the ontology graph is a taxonomy in which the relations are “is-a”, whereas the remaining structure of the graph supplies auxiliary information about the modeled domain and may include relations like “part-of”, “located-in”, “is-parent-of”, and many others
    • …
    corecore