833 research outputs found

    An Integral Spectral Representation of the Massive Dirac Propagator in the Kerr Geometry in Eddington-Finkelstein-type Coordinates

    Full text link
    We consider the massive Dirac equation in the non-extreme Kerr geometry in horizon-penetrating advanced Eddington-Finkelstein-type coordinates and derive a functional analytic integral representation of the associated propagator using the spectral theorem for unbounded self-adjoint operators, Stone's formula, and quantities arising in the analysis of Chandrasekhar's separation of variables. This integral representation describes the dynamics of Dirac particles outside and across the event horizon, up to the Cauchy horizon. In the derivation, we first write the Dirac equation in Hamiltonian form and show the essential self-adjointness of the Hamiltonian. For the latter purpose, as the Dirac Hamiltonian fails to be elliptic at the event and the Cauchy horizon, we cannot use standard elliptic methods of proof. Instead, we employ a new, general method for mixed initial-boundary value problems that combines results from the theory of symmetric hyperbolic systems with near-boundary elliptic methods. In this regard and since the time evolution may not be unitary because of Dirac particles impinging on the ring singularity, we also impose a suitable Dirichlet-type boundary condition on a time-like inner hypersurface placed inside the Cauchy horizon, which has no effect on the dynamics outside the Cauchy horizon. We then compute the resolvent of the Dirac Hamiltonian via the projector onto a finite-dimensional, invariant spectral eigenspace of the angular operator and the radial Green's matrix stemming from Chandrasekhar's separation of variables. Applying Stone's formula to the spectral measure of the Hamiltonian in the spectral decomposition of the Dirac propagator, that is, by expressing the spectral measure in terms of this resolvent, we obtain an explicit integral representation of the propagator.Comment: 31 pages, 1 figure, details added, references added, minor correction

    Open problems, questions, and challenges in finite-dimensional integrable systems

    Get PDF
    The paper surveys open problems and questions related to different aspects of integrable systems with finitely many degrees of freedom. Many of the open problems were suggested by the participants of the conference “Finite-dimensional Integrable Systems, FDIS 2017” held at CRM, Barcelona in July 2017.Postprint (updated version

    Modularity of Calabi-Yau varieties

    Full text link
    In this paper we discuss recent progress on the modularity of Calabi-Yau varieties. We focus mostly on the case of surfaces and threefolds. We will also discuss some progress on the structure of the L-function in connection with mirror symmetry. Finally, we address some questions and open problems.Comment: Further references adde
    • …
    corecore