9,633 research outputs found

    Gland Instance Segmentation in Colon Histology Images

    Get PDF
    This thesis looks at approaches to gland instance segmentation in histology images. The aim is to find suitable local image representations to describe the gland structures in images with benign tissue and those with malignant tissue and subsequently use them for design of accurate, scalable and flexible gland instance segmentation methods. The gland instance segmentation is a clinically important and technically challenging problem as the morphological structure and visual appearance of gland tissue is highly variable and complex. Glands are one of the most common organs in the human body. The glandular features are present in many cancer types and histopathologists use these features to predict tumour grade. Accurate tumour grading is critical for prescribing suitable cancer treatment resulting in improved outcome and survival rate. Different cancer grades are reflected by differences in glands morphology and structure. It is therefore important to accurately segment glands in histology images in order to get a valid prediction of tumour grade. Several segmentation methods, including segmentation with and without pre-classification, have been proposed and investigated as part of the research reported in this thesis. A number of feature spaces, including hand-crafted and deep features, have been investigated and experimentally validated to find a suitable set of image attributes for representation of benign and malignant gland tissue for the segmentation task. Furthermore, an exhaustive experimental examination of different combinations of features and classification methods have been carried out using both qualitative and quantitative assessments, including detection, shape and area fidelity metrics. It has been shown that the proposed hybrid method combining image level classification, to identify images with benign and malignant tissue, and pixel level classification, to perform gland segmentation, achieved the best results. It has been further shown that modelling benign glands using a three-class model, i.e. inside, outside and gland boundary, and malignant tissue using a two-class model is the best combination for achieving accurate and robust gland instance segmentation results. The deep learning features have been shown to overall outperform handcrafted features, however proposed ring-histogram features still performed adequately, particularly for segmentation of benign glands. The adopted transfer-learning model with proposed image augmentation has proven very successful with 100% image classification accuracy on the available test dataset. It has been shown that the modified object- level Boundary Jaccard metric is more suitable for measuring shape similarity than the previously used object-level Hausdorff distance, as it is not sensitive to outliers and could be easily integrated with region- based metrics such as the object-level Dice index, as contrary to the Hausdorff distance it is bounded between 0 and 1. Dissimilar to most of the other reported research, this study provides comprehensive comparative results for gland segmentation, with a large collection of diverse types of image features, including hand-crafted and deep features. The novel contributions include hybrid segmentation model superimposing image and pixel level classification, data augmentation for re-training deep learning models for the proposed image level classification, and the object- level Boundary Jaccard metric adopted for evaluation of instance segmentation methods

    Segmentation of MRI Prostate Images

    Get PDF
    In this work, we investigate the performance of two segmentation methods; level set, and texture-based, in segmentation of prostate region. Both segmentation methods are applied onto transverse view of T2-W-MRI slice of prostate acquired using a 3T scanner. Level set method is one of the popular partial differential equations (PDEs) based in image processing especially in image segmentation as it relies on an initial value PDEs for a propagating level set function. “It also has been introduced in many disciplines, such as computer graphics, computational geometry, and optimization because this method acts as a tool for numerical analysis of surfaces and shapes. Besides, level set method can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to parameterize the object. Prostate gland in MRI images is categorized as a texture image because the structures are not homogeneous and its surface has grey level values close to the neighbouring organs around the prostate which making it more difficult to detect the damaged tissues

    MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images

    Get PDF
    The analysis of glandular morphology within colon histopathology images is an important step in determining the grade of colon cancer. Despite the importance of this task, manual segmentation is laborious, time-consuming and can suffer from subjectivity among pathologists. The rise of computational pathology has led to the development of automated methods for gland segmentation that aim to overcome the challenges of manual segmentation. However, this task is non-trivial due to the large variability in glandular appearance and the difficulty in differentiating between certain glandular and non-glandular histological structures. Furthermore, a measure of uncertainty is essential for diagnostic decision making. To address these challenges, we propose a fully convolutional neural network that counters the loss of information caused by max-pooling by re-introducing the original image at multiple points within the network. We also use atrous spatial pyramid pooling with varying dilation rates for preserving the resolution and multi-level aggregation. To incorporate uncertainty, we introduce random transformations during test time for an enhanced segmentation result that simultaneously generates an uncertainty map, highlighting areas of ambiguity. We show that this map can be used to define a metric for disregarding predictions with high uncertainty. The proposed network achieves state-of-the-art performance on the GlaS challenge dataset and on a second independent colorectal adenocarcinoma dataset. In addition, we perform gland instance segmentation on whole-slide images from two further datasets to highlight the generalisability of our method. As an extension, we introduce MILD-Net+ for simultaneous gland and lumen segmentation, to increase the diagnostic power of the network.Comment: Initial version published at Medical Imaging with Deep Learning (MIDL) 201

    Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation

    Full text link
    Image segmentation is a fundamental problem in biomedical image analysis. Recent advances in deep learning have achieved promising results on many biomedical image segmentation benchmarks. However, due to large variations in biomedical images (different modalities, image settings, objects, noise, etc), to utilize deep learning on a new application, it usually needs a new set of training data. This can incur a great deal of annotation effort and cost, because only biomedical experts can annotate effectively, and often there are too many instances in images (e.g., cells) to annotate. In this paper, we aim to address the following question: With limited effort (e.g., time) for annotation, what instances should be annotated in order to attain the best performance? We present a deep active learning framework that combines fully convolutional network (FCN) and active learning to significantly reduce annotation effort by making judicious suggestions on the most effective annotation areas. We utilize uncertainty and similarity information provided by FCN and formulate a generalized version of the maximum set cover problem to determine the most representative and uncertain areas for annotation. Extensive experiments using the 2015 MICCAI Gland Challenge dataset and a lymph node ultrasound image segmentation dataset show that, using annotation suggestions by our method, state-of-the-art segmentation performance can be achieved by using only 50% of training data.Comment: Accepted at MICCAI 201
    • …
    corecore