1,762 research outputs found

    Heuristic search methods and cellular automata modelling for layout design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Spatial layout design must consider not only ease of movement for pedestrians under normal conditions, but also their safety in panic situations, such as an emergency evacuation in a theatre, stadium or hospital. Using pedestrian simulation statistics, the movement of crowds can be used to study the consequences of different spatial layouts. Previous works either create an optimal spatial arrangement or an optimal pedestrian circulation. They do not automatically optimise both problems simultaneously. Thus, the idea behind the research in this thesis is to achieve a vital architectural design goal by automatically producing an optimal spatial layout that will enable smooth pedestrian flow. The automated process developed here allows the rapid identification of layouts for large, complex, spatial layout problems. This is achieved by using Cellular Automata (CA) to model pedestrian simulation so that pedestrian flow can be explored at a microscopic level and designing a fitness function for heuristic search that maximises these pedestrian flow statistics in the CA simulation. An analysis of pedestrian flow statistics generated from feasible novel design solutions generated using the heuristic search techniques (hill climbing, simulated annealing and genetic algorithm style operators) is conducted. The statistics that are obtained from the pedestrian simulation is used to measure and analyse pedestrian flow behaviour. The analysis from the statistical results also provides the indication of the quality of the spatial layout design generated. The technique has shown promising results in finding acceptable solutions to this problem when incorporated with the pedestrian simulator when demonstrated on simulated and real-world layouts with real pedestrian data.This study was funded by the University Science of Malaysia and Kementerian Pengajian Tinggi Malaysia

    Multi-agent simulation: new approaches to exploring space-time dynamics in GIS

    Get PDF
    As part of the long term quest to develop more disaggregate, temporally dynamic models of spatial behaviour, micro-simulation has evolved to the point where the actions of many individuals can be computed. These multi-agent systems/simulation(MAS) models are a consequence of much better micro data, more powerful and user-friendly computer environments often based on parallel processing, and the generally recognised need in spatial science for modelling temporal process. In this paper, we develop a series of multi-agent models which operate in cellular space.These demonstrate the well-known principle that local action can give rise to global pattern but also how such pattern emerges as the consequence of positive feedback and learned behaviour. We first summarise the way cellular representation is important in adding new process functionality to GIS, and the way this is effected through ideas from cellular automata (CA) modelling. We then outline the key ideas of multi-agent simulation and this sets the scene for three applications to problems involving the use of agents to explore geographic space. We first illustrate how agents can be programmed to search route networks, finding shortest routes in adhoc as well as structured ways equivalent to the operation of the Bellman-Dijkstra algorithm. We then demonstrate how the agent-based approach can be used to simulate the dynamics of water flow, implying that such models can be used to effectively model the evolution of river systems. Finally we show how agents can detect the geometric properties of space, generating powerful results that are notpossible using conventional geometry, and we illustrate these ideas by computing the visual fields or isovists associated with different viewpoints within the Tate Gallery.Our forays into MAS are all based on developing reactive agent models with minimal interaction and we conclude with suggestions for how these models might incorporate cognition, planning, and stronger positive feedbacks between agents

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie
    • …
    corecore