564 research outputs found

    A learning algorithm for boltzmann machines

    Get PDF

    CMOS circuit implementations for neuron models

    Get PDF
    The mathematical neuron basic cells used as basic cells in popular neural network architectures and algorithms are discussed. The most popular neuron models (without training) used in neural network architectures and algorithms (NNA) are considered, focusing on hardware implementation of neuron models used in NAA, and in emulation of biological systems. Mathematical descriptions and block diagram representations are utilized in an independent approach. Nonoscillatory and oscillatory models are discusse

    Evolutionary cellular configurations for designing feed-forward neural networks architectures

    Get PDF
    Proceeding of: 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001 Granada, Spain, June 13–15, 2001In the recent years, the interest to develop automatic methods to determine appropriate architectures of feed-forward neural networks has increased. Most of the methods are based on evolutionary computation paradigms. Some of the designed methods are based on direct representations of the parameters of the network. These representations do not allow scalability, so to represent large architectures, very large structures are required. An alternative more interesting are the indirect schemes. They codify a compact representation of the neural network. In this work, an indirect constructive encoding scheme is presented. This scheme is based on cellular automata representations in order to increase the scalability of the method

    A Morphological Associative Memory Employing A Stored Pattern Independent Kernel Image and Its Hardware Model

    Get PDF
    An associative memory provides a convenient way for pattern retrieval and restoration, which has an important role for handling data distorted with noise. As an effective associative memory, we paid attention to a morphological associative memory (MAM) proposed by Ritter. The model is superior to ordinary associative memory models in terms of calculation amount, memory capacity, and perfect recall rate. However, in general, the kernel design becomes difficult as the stored pattern increases because the kernel uses a part of each stored pattern. In this paper, we propose a stored pattern independent kernel design method for the MAM and design the MAM employing the proposed kernel design with a standard digital manner in parallel architecture for acceleration. We confirm the validity of the proposed kernel design method by auto- and hetero-association experiments and investigate the efficiency of the hardware acceleration. A high-speed operation (more than 150 times in comparison with software execution) is achieved in the custom hardware. The proposed model works as an intelligent pre-processor for the Brain-Inspired Systems (Brain-IS) working in real world

    Asymptotic Normality of the Maximum Pseudolikelihood Estimator for Fully Visible Boltzmann Machines

    Full text link
    Boltzmann machines (BMs) are a class of binary neural networks for which there have been numerous proposed methods of estimation. Recently, it has been shown that in the fully visible case of the BM, the method of maximum pseudolikelihood estimation (MPLE) results in parameter estimates which are consistent in the probabilistic sense. In this article, we investigate the properties of MPLE for the fully visible BMs further, and prove that MPLE also yields an asymptotically normal parameter estimator. These results can be used to construct confidence intervals and to test statistical hypotheses. We support our theoretical results by showing that the estimator behaves as expected in a simulation study
    corecore