5 research outputs found

    Learning Fast and Precise Pixel-to-Torque Control

    Full text link
    In the field, robots often need to operate in unknown and unstructured environments, where accurate sensing and state estimation (SE) becomes a major challenge. Cameras have been used to great success in mapping and planning in such environments, as well as complex but quasi-static tasks such as grasping, but are rarely integrated into the control loop for unstable systems. Learning pixel-to-torque control promises to allow robots to flexibly handle a wider variety of tasks. Although they do not present additional theoretical obstacles, learning pixel-to-torque control for unstable systems that that require precise and high bandwidth control still poses a significant practical challenge, and best practices have not yet been established. To help drive reproducible research on the practical aspects of learning pixel-to-torque control, we propose a platform that can flexibly represent the entire process, from lab to deployment, for learning pixel-to-torque control on a robot with fast, unstable dynamics: the vision-based Furuta pendulum. The platform can be reproduced with either off-the-shelf or custom-built hardware. We expect that this platform will allow researchers to quickly and systematically test different approaches, as well as reproduce and benchmark case studies from other labs. We also present a first case study on this system using DNNs which, to the best of our knowledge, is the first demonstration of learning pixel-to-torque control on an unstable system with update rates faster than 100 Hz. A video synopsis can be found online at https://youtu.be/S2llScfG-8E, and in the supplementary material.Comment: video: https://www.youtube.com/watch?v=S2llScfG-8E 9 pages. Published in Robotics and Automation Magazin

    Enforcing Constraints over Learned Policies via Nonlinear MPC: Application to the Pendubot

    Get PDF
    In recent years Reinforcement Learning (RL) has achieved remarkable results. Nonetheless RL algorithms prove to be unsuccessful in robotics applications where constraints satisfaction is involved, e.g. for safety. In this work we propose a control algorithm that allows to enforce constraints over a learned control policy. Hence we combine Nonlinear Model Predictive Control (NMPC) with control-state trajectories generated from the learned policy at each time step. We prove the effectiveness of our method on the Pendubot, a challenging underactuated robot

    Viability in State-Action Space: Connecting Morphology, Control, and Learning

    Get PDF
    Wie können wir Robotern ermöglichen, modellfrei und direkt auf der Hardware zu lernen? Das maschinelle Lernen nimmt als Standardwerkzeug im Arsenal des Robotikers seinen Platz ein. Es gibt jedoch einige offene Fragen, wie man die Kontrolle über physikalische Systeme lernen kann. Diese Arbeit gibt zwei Antworten auf diese motivierende Frage. Das erste ist ein formales Mittel, um die inhärente Robustheit eines gegebenen Systemdesigns zu quantifizieren, bevor der Controller oder das Lernverfahren entworfen wird. Dies unterstreicht die Notwendigkeit, sowohl das Hardals auch das Software-Design eines Roboters zu berücksichtigen, da beide Aspekte in der Systemdynamik untrennbar miteinander verbunden sind. Die zweite ist die Formalisierung einer Sicherheitsmass, die modellfrei erlernt werden kann. Intuitiv zeigt diese Mass an, wie leicht ein Roboter Fehlschläge vermeiden kann. Auf diese Weise können Roboter unbekannte Umgebungen erkunden und gleichzeitig Ausfälle vermeiden. Die wichtigsten Beiträge dieser Dissertation basieren sich auf der Viabilitätstheorie. Viabilität bietet eine alternative Sichtweise auf dynamische Systeme: Anstatt sich auf die Konvergenzeigenschaften eines Systems in Richtung Gleichgewichte zu konzentrieren, wird der Fokus auf Menge von Fehlerzuständen und die Fähigkeit des Systems, diese zu vermeiden, verlagert. Diese Sichtweise eignet sich besonders gut für das Studium der Lernkontrolle an Robotern, da Stabilität im Sinne einer Konvergenz während des Lernprozesses selten gewährleistet werden kann. Der Begriff der Viabilität wird formal auf den Zustand-Aktion-Raum erweitert, mit Viabilitätsmengen von Staat-Aktionspaaren. Eine über diese Mengen definierte Mass ermöglicht eine quantifizierte Bewertung der Robustheit, die für die Familie aller fehlervermeidenden Regler gilt, und ebnet den Weg für ein sicheres, modellfreies Lernen. Die Arbeit beinhaltet auch zwei kleinere Beiträge. Der erste kleine Beitrag ist eine empirische Demonstration der Shaping durch ausschliessliche Modifikation der Systemdynamik. Diese Demonstration verdeutlicht die Bedeutung der Robustheit gegenüber Fehlern für die Lernkontrolle: Ausfälle können nicht nur Schäden verursachen, sondern liefern in der Regel auch keine nützlichen Gradienteninformationen für den Lernprozess. Der zweite kleine Beitrag ist eine Studie über die Wahl der Zustandsinitialisierungen. Entgegen der Intuition und der üblichen Praxis zeigt diese Studie, dass es zuverlässiger sein kann, das System gelegentlich aus einem Zustand zu initialisieren, der bekanntermassen unkontrollierbar ist.How can we enable robots to learn control model-free and directly on hardware? Machine learning is taking its place as a standard tool in the roboticist’s arsenal. However, there are several open questions on how to learn control for physical systems. This thesis provides two answers to this motivating question. The first is a formal means to quantify the inherent robustness of a given system design, prior to designing the controller or learning agent. This emphasizes the need to consider both the hardware and software design of a robot, which are inseparably intertwined in the system dynamics. The second is the formalization of a safety-measure, which can be learned model-free. Intuitively, this measure indicates how easily a robot can avoid failure, and enables robots to explore unknown environments while avoiding failures. The main contributions of this dissertation are based on viability theory. Viability theory provides a slightly unconventional view of dynamical systems: instead of focusing on a system’s convergence properties towards equilibria, the focus is shifted towards sets of failure states and the system’s ability to avoid these sets. This view is particularly well suited to studying learning control in robots, since stability in the sense of convergence can rarely be guaranteed during the learning process. The notion of viability is formally extended to state-action space, with viable sets of state-action pairs. A measure defined over these sets allows a quantified evaluation of robustness valid for the family of all failure-avoiding control policies, and also paves the way for enabling safe model-free learning. The thesis also includes two minor contributions. The first minor contribution is an empirical demonstration of shaping by exclusively modifying the system dynamics. This demonstration highlights the importance of robustness to failures for learning control: not only can failures cause damage, but they typically do not provide useful gradient information for the learning process. The second minor contribution is a study on the choice of state initializations. Counter to intuition and common practice, this study shows it can be more reliable to occasionally initialize the system from a state that is known to be uncontrollable

    A Learnable Safety Measure

    No full text
    corecore