6,978 research outputs found

    A Latent Dirichlet Framework for Relevance Modeling

    Full text link
    Abstract. Relevance-based language models operate by estimating the probabilities of observing words in documents relevant (or pseudo relevant) to a topic. However, these models assume that if a document is relevant to a topic, then all tokens in the document are relevant to that topic. This could limit model robustness and effectiveness. In this study, we propose a Latent Dirichlet relevance model, which relaxes this assumption. Our approach derives from current research on Latent Dirichlet Allocation (LDA) topic models. LDA has been extensively explored, especially for generating a set of topics from a corpus. A key attraction is that in LDA a document may be about several topics. LDA itself, however, has a limitation that is also addressed in our work. Topics generated by LDA from a corpus are synthetic, i.e., they do not necessarily correspond to topics identified by humans for the same corpus. In contrast, our model explicitly considers the relevance relationships between documents and given topics (queries). Thus unlike standard LDA, our model is directly applicable to goals such as relevance feedback for query modification and text classification, where topics (classes and queries) are provided upfront. Thus although the focus of our paper is on improving relevance-based language models, in effect our approach bridges relevance-based language models and LDA addressing limitations of both. Finally, we propose an idea that takes advantage of “bagof-words” assumption to reduce the complexity of Gibbs sampling based learning algorithm

    Integrating Document Clustering and Topic Modeling

    Full text link
    Document clustering and topic modeling are two closely related tasks which can mutually benefit each other. Topic modeling can project documents into a topic space which facilitates effective document clustering. Cluster labels discovered by document clustering can be incorporated into topic models to extract local topics specific to each cluster and global topics shared by all clusters. In this paper, we propose a multi-grain clustering topic model (MGCTM) which integrates document clustering and topic modeling into a unified framework and jointly performs the two tasks to achieve the overall best performance. Our model tightly couples two components: a mixture component used for discovering latent groups in document collection and a topic model component used for mining multi-grain topics including local topics specific to each cluster and global topics shared across clusters.We employ variational inference to approximate the posterior of hidden variables and learn model parameters. Experiments on two datasets demonstrate the effectiveness of our model.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    A unifying representation for a class of dependent random measures

    Full text link
    We present a general construction for dependent random measures based on thinning Poisson processes on an augmented space. The framework is not restricted to dependent versions of a specific nonparametric model, but can be applied to all models that can be represented using completely random measures. Several existing dependent random measures can be seen as specific cases of this framework. Interesting properties of the resulting measures are derived and the efficacy of the framework is demonstrated by constructing a covariate-dependent latent feature model and topic model that obtain superior predictive performance

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University
    • …
    corecore