3,313 research outputs found

    Rotation-invariant features for multi-oriented text detection in natural images.

    Get PDF
    Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes

    Scene Based Text Recognition From Natural Images and Classification Based on Hybrid CNN Models with Performance Evaluation

    Get PDF
    Similar to the recognition of captions, pictures, or overlapped text that typically appears horizontally, multi-oriented text recognition in video frames is challenging since it has high contrast related to its background. Multi-oriented form of text normally denotes scene text which makes text recognition further stimulating and remarkable owing to the disparaging features of scene text. Hence, predictable text detection approaches might not give virtuous outcomes for multi-oriented scene text detection. Text detection from any such natural image has been challenging since earlier times, and significant enhancement has been made recently to execute this task. While coming to blurred, low-resolution, and small-sized images, most of the previous research conducted doesnā€™t work well; hence, there is a research gap in that area. Scene-based text detection is a key area due to its adverse applications. One such primary reason for the failure of earlier methods is that the existing methods could not generate precise alignments across feature areas and targets for those images. This research focuses on scene-based text detection with the aid of YOLO based object detector and a CNN-based classification approach. The experiments were conducted in MATLAB 2019A, and the packages used were RESNET50, INCEPTIONRESNETV2, and DENSENET201. The efficiency of the proposed methodology - Hybrid resnet -YOLO procured maximum accuracy of 91%, Hybrid inceptionresnetv2 -YOLO of 81.2%, and Hybrid densenet201 -YOLO of 83.1% and was verified by comparing it with the existing research works Resnet50 of 76.9%, ResNet-101 of 79.5%, and ResNet-152 of 82%
    • ā€¦
    corecore