33,904 research outputs found

    Optimal coding and the origins of Zipfian laws

    Full text link
    The problem of compression in standard information theory consists of assigning codes as short as possible to numbers. Here we consider the problem of optimal coding -- under an arbitrary coding scheme -- and show that it predicts Zipf's law of abbreviation, namely a tendency in natural languages for more frequent words to be shorter. We apply this result to investigate optimal coding also under so-called non-singular coding, a scheme where unique segmentation is not warranted but codes stand for a distinct number. Optimal non-singular coding predicts that the length of a word should grow approximately as the logarithm of its frequency rank, which is again consistent with Zipf's law of abbreviation. Optimal non-singular coding in combination with the maximum entropy principle also predicts Zipf's rank-frequency distribution. Furthermore, our findings on optimal non-singular coding challenge common beliefs about random typing. It turns out that random typing is in fact an optimal coding process, in stark contrast with the common assumption that it is detached from cost cutting considerations. Finally, we discuss the implications of optimal coding for the construction of a compact theory of Zipfian laws and other linguistic laws.Comment: in press in the Journal of Quantitative Linguistics; definition of concordant pair corrected, proofs polished, references update

    The placement of the head that maximizes predictability. An information theoretic approach

    Get PDF
    The minimization of the length of syntactic dependencies is a well-established principle of word order and the basis of a mathematical theory of word order. Here we complete that theory from the perspective of information theory, adding a competing word order principle: the maximization of predictability of a target element. These two principles are in conflict: to maximize the predictability of the head, the head should appear last, which maximizes the costs with respect to dependency length minimization. The implications of such a broad theoretical framework to understand the optimality, diversity and evolution of the six possible orderings of subject, object and verb are reviewed.Comment: in press in Glottometric

    Estimating the Algorithmic Complexity of Stock Markets

    Full text link
    Randomness and regularities in Finance are usually treated in probabilistic terms. In this paper, we develop a completely different approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov (1965). We present some elements of this theory and show why it is particularly relevant to Finance, and potentially to other sub-fields of Economics as well. We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an iterative "regularity erasing procedure" implemented to use lossless compression algorithms on financial data. Examples are provided with both simulated and real-world financial time series. The contributions of this article are twofold. The first one is methodological : we show that some structural regularities, invisible with classical statistical tests, can be detected by this algorithmic method. The second one consists in illustrations on the daily Dow-Jones Index suggesting that beyond several well-known regularities, hidden structure may in this index remain to be identified
    corecore