15,375 research outputs found

    Relational Graph Models at Work

    Full text link
    We study the relational graph models that constitute a natural subclass of relational models of lambda-calculus. We prove that among the lambda-theories induced by such models there exists a minimal one, and that the corresponding relational graph model is very natural and easy to construct. We then study relational graph models that are fully abstract, in the sense that they capture some observational equivalence between lambda-terms. We focus on the two main observational equivalences in the lambda-calculus, the theory H+ generated by taking as observables the beta-normal forms, and H* generated by considering as observables the head normal forms. On the one hand we introduce a notion of lambda-K\"onig model and prove that a relational graph model is fully abstract for H+ if and only if it is extensional and lambda-K\"onig. On the other hand we show that the dual notion of hyperimmune model, together with extensionality, captures the full abstraction for H*

    No solvable lambda-value term left behind

    Full text link
    In the lambda calculus a term is solvable iff it is operationally relevant. Solvable terms are a superset of the terms that convert to a final result called normal form. Unsolvable terms are operationally irrelevant and can be equated without loss of consistency. There is a definition of solvability for the lambda-value calculus, called v-solvability, but it is not synonymous with operational relevance, some lambda-value normal forms are unsolvable, and unsolvables cannot be consistently equated. We provide a definition of solvability for the lambda-value calculus that does capture operational relevance and such that a consistent proof-theory can be constructed where unsolvables are equated attending to the number of arguments they take (their "order" in the jargon). The intuition is that in lambda-value the different sequentialisations of a computation can be distinguished operationally. We prove a version of the Genericity Lemma stating that unsolvable terms are generic and can be replaced by arbitrary terms of equal or greater order.Comment: 43 page

    Noncommutative differential calculus for Moyal subalgebras

    Full text link
    We build a differential calculus for subalgebras of the Moyal algebra on R^4 starting from a redundant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we find a frame of 1-forms which allows to realize the complex of forms as a tensor product of the noncommutative subalgebras with the external algebra Lambda^*.Comment: 13 pages, no figures. One reference added, minor correction

    Principal Typings in a Restricted Intersection Type System for Beta Normal Forms with De Bruijn Indices

    Full text link
    The lambda-calculus with de Bruijn indices assembles each alpha-class of lambda-terms in a unique term, using indices instead of variable names. Intersection types provide finitary type polymorphism and can characterise normalisable lambda-terms through the property that a term is normalisable if and only if it is typeable. To be closer to computations and to simplify the formalisation of the atomic operations involved in beta-contractions, several calculi of explicit substitution were developed mostly with de Bruijn indices. Versions of explicit substitutions calculi without types and with simple type systems are well investigated in contrast to versions with more elaborate type systems such as intersection types. In previous work, we introduced a de Bruijn version of the lambda-calculus with an intersection type system and proved that it preserves subject reduction, a basic property of type systems. In this paper a version with de Bruijn indices of an intersection type system originally introduced to characterise principal typings for beta-normal forms is presented. We present the characterisation in this new system and the corresponding versions for the type inference and the reconstruction of normal forms from principal typings algorithms. We briefly discuss the failure of the subject reduction property and some possible solutions for it

    Resource control and intersection types: an intrinsic connection

    Get PDF
    In this paper we investigate the λ\lambda -calculus, a λ\lambda-calculus enriched with resource control. Explicit control of resources is enabled by the presence of erasure and duplication operators, which correspond to thinning and con-traction rules in the type assignment system. We introduce directly the class of λ\lambda -terms and we provide a new treatment of substitution by its decompo-sition into atomic steps. We propose an intersection type assignment system for λ\lambda -calculus which makes a clear correspondence between three roles of variables and three kinds of intersection types. Finally, we provide the characterisation of strong normalisation in λ\lambda -calculus by means of an in-tersection type assignment system. This process uses typeability of normal forms, redex subject expansion and reducibility method.Comment: arXiv admin note: substantial text overlap with arXiv:1306.228

    Strong normalisation for applied lambda calculi

    Full text link
    We consider the untyped lambda calculus with constructors and recursively defined constants. We construct a domain-theoretic model such that any term not denoting bottom is strongly normalising provided all its `stratified approximations' are. From this we derive a general normalisation theorem for applied typed lambda-calculi: If all constants have a total value, then all typeable terms are strongly normalising. We apply this result to extensions of G\"odel's system T and system F extended by various forms of bar recursion for which strong normalisation was hitherto unknown.Comment: 14 pages, paper acceptet at electronic journal LMC

    Normalization by Evaluation for Call-by-Push-Value and Polarized Lambda-Calculus

    Get PDF
    We observe that normalization by evaluation for simply-typed lambda-calculus with weak coproducts can be carried out in a weak bi-cartesian closed category of presheaves equipped with a monad that allows us to perform case distinction on neutral terms of sum type. The placement of the monad influences the normal forms we obtain: for instance, placing the monad on coproducts gives us eta-long beta-pi normal forms where pi refers to permutation of case distinctions out of elimination positions. We further observe that placing the monad on every coproduct is rather wasteful, and an optimal placement of the monad can be determined by considering polarized simple types inspired by focalization. Polarization classifies types into positive and negative, and it is sufficient to place the monad at the embedding of positive types into negative ones. We consider two calculi based on polarized types: pure call-by-push-value (CBPV) and polarized lambda-calculus, the natural deduction calculus corresponding to focalized sequent calculus. For these two calculi, we present algorithms for normalization by evaluation. We further discuss different implementations of the monad and their relation to existing normalization proofs for lambda-calculus with sums. Our developments have been partially formalized in the Agda proof assistant
    corecore