160 research outputs found

    State of AI-based monitoring in smart manufacturing and introduction to focused section

    Get PDF
    Over the past few decades, intelligentization, supported by artificial intelligence (AI) technologies, has become an important trend for industrial manufacturing, accelerating the development of smart manufacturing. In modern industries, standard AI has been endowed with additional attributes, yielding the so-called industrial artificial intelligence (IAI) that has become the technical core of smart manufacturing. AI-powered manufacturing brings remarkable improvements in many aspects of closed-loop production chains from manufacturing processes to end product logistics. In particular, IAI incorporating domain knowledge has benefited the area of production monitoring considerably. Advanced AI methods such as deep neural networks, adversarial training, and transfer learning have been widely used to support both diagnostics and predictive maintenance of the entire production process. It is generally believed that IAI is the critical technologies needed to drive the future evolution of industrial manufacturing. This article offers a comprehensive overview of AI-powered manufacturing and its applications in monitoring. More specifically, it summarizes the key technologies of IAI and discusses their typical application scenarios with respect to three major aspects of production monitoring: fault diagnosis, remaining useful life prediction, and quality inspection. In addition, the existing problems and future research directions of IAI are also discussed. This article further introduces the papers in this focused section on AI-based monitoring in smart manufacturing by weaving them into the overview, highlighting how they contribute to and extend the body of literature in this area

    Learning Informative Health Indicators Through Unsupervised Contrastive Learning

    Full text link
    Condition monitoring is essential to operate industrial assets safely and efficiently. To achieve this goal, the development of robust health indicators has recently attracted significant attention. These indicators, which provide quantitative real-time insights into the health status of industrial assets over time, serve as valuable tools for fault detection and prognostics. In this study, we propose a novel and universal approach to learn health indicators based on unsupervised contrastive learning. Operational time acts as a proxy for the asset's degradation state, enabling the learning of a contrastive feature space that facilitates the construction of a health indicator by measuring the distance to the healthy condition. To highlight the universality of the proposed approach, we assess the proposed contrastive learning framework in two distinct tasks - wear assessment and fault detection - across two different case studies: a milling machines case study and a real condition monitoring case study of railway wheels from operating trains. First, we evaluate if the health indicator is able to learn the real health condition on a milling machine case study where the ground truth wear condition is continuously measured. Second, we apply the proposed method on a real case study of railway wheels where the ground truth health condition is not known. Here, we evaluate the suitability of the learned health indicator for fault detection of railway wheel defects. Our results demonstrate that the proposed approach is able to learn the ground truth health evolution of milling machines and the learned health indicator is suited for fault detection of railway wheels operated under various operating conditions by outperforming state-of-the-art methods. Further, we demonstrate that our proposed approach is universally applicable to different systems and different health conditions
    • …
    corecore