2,908,678 research outputs found

    A knowledge-based approach to VLSI-design in an open CAD-environment

    Get PDF
    A knowledge-based approach is suggested to assist a designer in the increasingly complex task of generating VLSI-chips from abstract, high-level specifications of the system. The complexity of designing VLSI-circuits has reached a level where computer-based assistance has become indispensable. Not all of the design tasks allow for algorithmic solutions. AI technique can be used, in order to support the designer with computer-aided tools for tasks not suited for algorithmic approaches. The approach described in this paper is based upon the underlying characteristics of VLSI design processes in general, comprising all stages of the design. A universal model is presented, accompanied with a recording method for the acquisition of design knowledge - strategic and task-specific - in terms of the design actions involved and their effects on the design itself. This method is illustrated by a simple design example: the implementation of the logical EXOR-component. Finally suggestions are made for obtaining a universally usable architecture of a knowledge-based system for VLSI-design

    Externalising tacit overview knowledge: A model-based approach to supporting design teams

    Get PDF
    Successful realization of large-scale product development programs is challenging because of complex product and process dependencies and complicated team interactions. Proficient teamwork is underpinned by knowledge of the manner in which tasks performed by different design participants fit together to create an effective whole. Based on an extensive industrial case study with a diesel engine company, this paper first argues that the overview and experience of senior designers play an important part in supporting teamwork by coordinating activities and facilitating proactive communication across large project teams. As experts move on and novices or contractors are hired, problems are likely to occur as tacit overview knowledge is lost. If informal, overview-driven processes break down, the risk of costly oversights will increase, and greater management overhead will be required to realize successful product designs. Existing process models provide a means to express the connectivity between tasks and components thus to compensate partially for the loss of tacit overview. This paper proposes the use of design confidence, a metric that reflects the designer's belief in the maturity of a particular design parameter at a given point in the process, to address the limitations of existing models. The applicability of confidence-based design models in providing overview, as well as their shortcomings, will be demonstrated through the example of a diesel engine design process. Confidence can be used to make overview knowledge explicit and convey additional information about the design artifact, thereby informing communication and negotiation between team

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    Redesign of technical systems

    Get PDF
    The paper describes a systematic approach to support the redesign process. Redesign is the adaptation of a technical system in order to meet new specifications. The approach presented is based on techniques developed in model-based diagnosis research. The essence of the approach is to find the part of the system which causes the discrepancy between a formal specification of the system to be designed and the description of the existing technical system. Furthermore, new specifications are generated, describing the new behaviour for the `faultyÂż part. These specifications guide the actual design of this part. Both the specification and design description are based on YMIR, an ontology for structuring engineering design knowledge

    Modelling collective learning in design

    Get PDF
    In this paper, a model of collective learning in design is developed in the context of team design. It explains that a team design activity uses input knowledge, environmental information, and design goals to produce output knowledge. A collective learning activity uses input knowledge from different agents and produces learned knowledge with the process of knowledge acquisition and transformation between different agents, which may be triggered by learning goals and rationale triggers. Different forms of collective learning were observed with respect to agent interactions, goal(s) of learning, and involvement of an agent. Three types of links between team design and collective learning were identified, namely teleological, rationale, and epistemic. Hypotheses of collective learning are made based upon existing theories and models in design and learning, which were tested using a protocol analysis approach. The model of collective learning in design is derived from the test results. The proposed model can be used as a basis to develop agent-based learning systems in design. In the future, collective learning between design teams, the links between collective learning and creativity, and computational support for collective learning can be investigated

    A data structure and algorithm for fault diagnosis

    Get PDF
    Results of preliminary research on the design of a knowledge based fault diagnosis system for use with on-orbit spacecraft such as the Hubble Space Telescope are presented. A candidate data structure and associated search algorithm from which the knowledge based system can evolve is discussed. This algorithmic approach will then be examined in view of its inability to diagnose certain common faults. From that critique, a design for the corresponding knowledge based system will be given

    Enhancing design learning using groupware

    Get PDF
    Project work is increasingly used to help engineering students integrate, apply and expand on knowledge gained from theoretical classes in their curriculum and expose students to 'real world' tasks [1]. To help facilitate this process, the department of Design, Manufacture and Engineering Management at the University of Strathclyde has developed a web±based groupware product called LauLima to help students store, share, structure and apply information when they are working in design teams. This paper describes a distributed design project class in which LauLima has been deployed in accordance with a Design Knowledge Framework that describes how design knowledge is generated and acquired in industry, suggesting modes of design teaching and learning. Alterations to the presentation, delivery and format of the class are discussed, and primarily relate to embedding a more rigorous form of project-based learning. The key educational changes introduced to the project were: the linking of information concepts to support the design process; a multidisciplinary team approach to coaching; and a distinction between formal and informal resource collections. The result was a marked improvement in student learning and ideation

    A game based approach to improve traders' decision-making

    Get PDF
    Purpose: The development of a game based approach to improving the decision-making capabilities of financial traders through attention to improving the regulation of emotions during trading. Design/methodology/approach: The project used a design-based research approach to integrate the contributions of a highly inter-disciplinary team. The approach was underpinned by considerable stakeholder engagement to understand the ‘ecology of practices’ in which this learning approach should be embedded. Findings: Taken together, our 35 laboratory, field and evaluation studies provide much support for the validity of our game based learning approach, the learning elements which make it up, and the value of designing game-based learning to fit within an ecology of existing practices. Originality/value: The novelty of the work described in the paper comes from the focus in this research project of combining knowledge and skills from multiple disciplines informed by a deep understanding of the context of application to achieve the successful development of a Learning Pathway, which addresses the transfer of learning to the practice environment Key words: Design-based research, emotion-regulation, disposition–effect, financial traders, serious games, sensor-based game

    An intelligent approach to design three-dimensional aircraft sheet metal part model for manufacture

    Get PDF
    Aircraft sheet metal part manufacturing is a knowledge-intensive process, and the manufacturability and manufacturing information are required to be considered in three-dimensional (3D) model by knowledge reuse. This paper presents a 3D model structure of the aircraft sheet metal part and an intelligent approach to design the model for manufacture combining intelligent manufacturability analysis with manufacturing information definition. Processability of part, formability of material and cost of fabrication are proposed to analyse the manufacturability of the part. Knowledge base for manufacturability analysis is established, and knowledge is reused to evaluate the part’s manufacturability intelligently to meet the constraints of manufacturing conditions. Non-geometric information is defined in the 3D model to meet the needs of digital manufacturing and inspection using model-based technology. An example is given to describe the process of design for manufacture, which shows that the approach can realize the concurrent design and digital manufacturing of aircraft sheet metal
    • 

    corecore