13 research outputs found

    Defending Against Adversarial Attacks On Medical Imaging Ai Systems

    Get PDF
    Although deep learning systems trained on medical images have shown state-of-the-art performance in many clinical prediction tasks, recent studies demonstrate that these systems can be fooled by carefully crafted adversarial images. It has raised concerns on the practical deployment of deep learning based medical image classification systems. Although an array of defense techniques have been developed and proved to be effective in computer vision, defending against adversarial attacks on medical images remains largely an uncharted territory due to their unique challenges: crafted adversarial noises added to a highly standardized medical image can make it a hard sample for model to predict and label scarcity limits adversarial generalizability. To tackle these challenges, we propose two defending methods: one unsupervised learning approach to detect those crafted hard samples and one robust medical imaging AI framework based on an additional Semi-Supervised Adversarial Training (SSAT) module to enhance the overall system robustness, followed by a new measure for assessing systems adversarial risk. We systematically demonstrate the advantages of our methods over the existing adversarial defense techniques under diverse real-world settings of adversarial attacks using benchmark X-ray and OCT imaging data sets

    Adversarial Machine Learning For Advanced Medical Imaging Systems

    Get PDF
    Although deep neural networks (DNNs) have achieved significant advancement in various challenging tasks of computer vision, they are also known to be vulnerable to so-called adversarial attacks. With only imperceptibly small perturbations added to a clean image, adversarial samples can drastically change models’ prediction, resulting in a significant drop in DNN’s performance. This phenomenon poses a serious threat to security-critical applications of DNNs, such as medical imaging, autonomous driving, and surveillance systems. In this dissertation, we present adversarial machine learning approaches for natural image classification and advanced medical imaging systems. We start by describing our advanced medical imaging systems to tackle the major challenges of on-device deployment: automation, uncertainty, and resource constraint. It is followed by novel unsupervised and semi-supervised robust training schemes to enhance the adversarial robustness of these medical imaging systems. These methods are designed to tackle the unique challenges of defending against adversarial attacks on medical imaging systems and are sufficiently flexible to generalize to various medical imaging modalities and problems. We continue on developing novel training scheme to enhance adversarial robustness of the general DNN based natural image classification models. Based on a unique insight into the predictive behavior of DNNs that they tend to misclassify adversarial samples into the most probable false classes, we propose a new loss function as a drop-in replacement for the cross-entropy loss to improve DNN\u27s adversarial robustness. Specifically, it enlarges the probability gaps between true class and false classes and prevents them from being melted by small perturbations. Finally, we conclude the dissertation by summarizing original contributions and discussing our future work that leverages DNN interpretability constraint on adversarial training to tackle the central machine learning problem of generalization gap

    Deep Semantic Segmentation of Natural and Medical Images: A Review

    Full text link
    The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.Comment: 45 pages, 16 figures. Accepted for publication in Springer Artificial Intelligence Revie

    Machine Learning of Facial Attributes Using Explainable, Secure and Generative Adversarial Networks

    Get PDF
    "Attributes" are referred to abstractions that humans use to group entities and phenomena that have a common characteristic. In machine learning (ML), attributes are fundamental because they bridge the semantic gap between humans and ML systems. Thus, researchers have been using this concept to transform complicated ML systems into interactive ones. However, training the attribute detectors which are central to attribute-based ML systems can still be challenging. It might be infeasible to gather attribute labels for rare combinations to cover all the corner cases, which can result in weak detectors. Also, it is not clear how to fill in the semantic gap with attribute detectors themselves. Finally, it is not obvious how to interpret the detectors' outputs in the presence of adversarial noise. First, we investigate the effectiveness of attributes for bridging the semantic gap in complicated ML systems. We turn a system that does continuous authentication of human faces on mobile phones into an interactive attribute-based one. We employ deep multi-task learning in conjunction with multi-view classification using facial parts to tackle this problem. We show how the proposed system decomposition enables efficient deployment of deep networks for authentication on mobile phones with limited resources. Next, we seek to improve the attribute detectors by using conditional image synthesis. We take a generative modeling approach for manipulating the semantics of a given image to provide novel examples. Previous works condition the generation process on binary attribute existence values. We take this type of approaches one step further by modeling each attribute as a distributed representation in a vector space. These representations allow us to not only toggle the presence of attributes but to transfer an attribute style from one image to the other. Furthermore, we show diverse image generation from the same set of conditions, which was not possible using existing methods with a single dimension per attribute. We then investigate filling in the semantic gap between humans and attribute classifiers by proposing a new way to explain the pre-trained attribute detectors. We use adversarial training in conjunction with an encoder-decoder model to learn the behavior of binary attribute classifiers. We show that after our proposed model is trained, one can see which areas of the image contribute to the presence/absence of the target attribute, and also how to change image pixels in those areas so that the attribute classifier decision changes in a consistent way with human perception. Finally, we focus on protecting the attribute models from un-interpretable behaviors provoked by adversarial perturbations. These behaviors create an inexplainable semantic gap since they are visually unnoticeable. We propose a method based on generative adversarial networks to alleviate this issue. We learn the training data distribution that is used to train the core classifier and use it to detect and denoise test samples. We show that the method is effective for defending facial attribute detectors

    Multiple Object Tracking in Urban Traffic Scenes

    Get PDF
    RÉSUMÉ:Le suivi multiobjets (MOT) est un domaine très étudié qui a évolué et changé beaucoup durant les années grâce à ses plusieurs applications potentielles pour améliorer notre qualité de vie. Dans notre projet de recherche, spécifiquement, nous sommes intéressés par le MOT dans les scènes de trafic urbain pour extraire précisément les trajectoires des usagers de la route, afin d’améliorer les systèmes de circulation routière desquels nous bénéficions tous.Notre première contribution est l’introduction d’informations sur les étiquettes de classe dans l’ensemble des caractéristiques qui décrivent les objets pour les associer sur différents trames, afin de bien capturer leur mouvement sous forme de trajectoires dans un environnement réel.Nous capitalisons sur les informations provenant d’un détecteur basé sur l’apprentissage profond qui est utilisé pour l’extraction des objets d’intérêt avant la procédure de suivi, carnous avons été intrigués par leurs popularités croissantes et les bonnes performances qu’ils obtiennent. Cependant, malgré leur potentiel prometteur dans la littérature, nous avons constaté que les résultats étaient décevants dans nos expériences. La qualité des détections,telle que postulée, affecte grandement la qualité des trajectoires finales. Néanmoins, nous avons observé que les informations des étiquettes de classe, ainsi que son score de confiance, sont très utiles pour notre application, où il y a un nombre élevé de variabilité pour les types d’usagers de la route.Ensuite, nous avons concentré nos efforts sur la fusion des entrées de deux sources différentes afin d’obtenir un ensemble d’objets en entrée avec un niveau de précision satisfaisant pour procéder à l’étape de suivi. À ce stade, nous avons travaillé sur l’intégration des boîtes englobantes à partir d’un détecteur multi-classes par apprentissage et d’une méthode basée sur la soustraction d’arrière-plan pour résoudre les problèmes tels que la fragmentation et les représentations redondantes du même objet.---------- ABSTRACT:Multiple object tracking (MOT) is an intensively researched area that have evolved and undergone much innovation throughout the years due to its potential in a lot of applications to improve our quality of life. In our research project, specifically, we are interested in applying MOT in urban traffic scenes to portray an accurate representation of the road user trajectories for the eventual improvements of road traffic systems that affect people from all walks of life. Our first contribution is the introduction of class label information as part of the features that describe the targets and for associating them across frames to capture their motion into trajectories in real environment. We capitalize on that information from a deep learning detector that is used for extraction of objects of interest prior to the tracking procedure, since we were intrigued by their growing popularity and reported good performances. However,despite their promising potential in the literature, we found that the results were disappointing in our experiments. The quality of extracted input, as postulated, critically affects the quality of the final trajectories obtained as tracking output. Nevertheless, we observed that the class label information, along with its confidence score, is invaluable for our application of urban traffic settings where there are a high number of variability in terms of types of road users. Next, we focused our effort on fusing inputs from two different sources in order to obtain a set of objects with a satisfactory level of accuracy to proceed with the tracking stage. At this point, we worked on the integration of the bounding boxes from a learned multi-class object detector and a background subtraction-based method to resolve issues, such as fragmentation and redundant representations of the same object
    corecore