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RÉSUMÉ

Le suivi multiobjets (MOT) est un domaine très étudié qui a évolué et changé beaucoup
durant les années grâce à ses plusieurs applications potentielles pour améliorer notre qualité
de vie. Dans notre projet de recherche, spécifiquement, nous sommes intéressés par le MOT
dans les scènes de trafic urbain pour extraire précisément les trajectoires des usagers de la
route, afin d’améliorer les systèmes de circulation routière desquels nous bénéficions tous.

Notre première contribution est l’introduction d’informations sur les étiquettes de classe dans
l’ensemble des caractéristiques qui décrivent les objets pour les associer sur différents trames,
afin de bien capturer leur mouvement sous forme de trajectoires dans un environnement réel.
Nous capitalisons sur les informations provenant d’un détecteur basé sur l’apprentissage
profond qui est utilisé pour l’extraction des objets d’intérêt avant la procédure de suivi, car
nous avons été intrigués par leurs popularités croissantes et les bonnes performances qu’ils
obtiennent. Cependant, malgré leur potentiel prometteur dans la littérature, nous avons
constaté que les résultats étaient décevants dans nos expériences. La qualité des détections,
telle que postulée, affecte grandement la qualité des trajectoires finales. Néanmoins, nous
avons observé que les informations des étiquettes de classe, ainsi que son score de confiance,
sont très utiles pour notre application, où il y a un nombre élevé de variabilité pour les types
d’usagers de la route.

Ensuite, nous avons concentré nos efforts sur la fusion des entrées de deux sources différentes
afin d’obtenir un ensemble d’objets en entrée avec un niveau de précision satisfaisant pour
procéder à l’étape de suivi. À ce stade, nous avons travaillé sur l’intégration des boîtes en-
globantes à partir d’un détecteur multi-classes par apprentissage et d’une méthode basée sur
la soustraction d’arrière-plan pour résoudre les problèmes tels que la fragmentation et les
représentations redondantes du même objet. Nous avons décidé d’utiliser une meilleure for-
mulation pour la distance spatiale entre les objets utilisée pendant le processus d’association
des données. Dans notre méthode de suivi proposée, le paradigme de suivi est également
amélioré avec une évaluation de la qualité de la prédiction, où la prédiction est utilisée dans
les trajectoires lorsque des occlusions et des interactions entre les objets causent des difficultés
lors des correspondances dans certaines trames.

Compte tenu des défis que nous avons rencontrés au cours de l’avancement de la recherche,
nous avons été motivés à réaliser une étude systématique et quantitative pour comparer
et évaluer les effets de la détection supervisée et de la détection non supervisée sur nos
performances de suivi. Notre méthode de suivi proposée inclut désormais des vecteurs de
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description de ReID dans l’association des données en raison de leur efficacité rapportée
dans les publications récentes. Nous avons adopté pour un détecteur par apprentissage
profond plus récent et plus puissant et une version modifiée d’une méthode de soustraction
d’arrière-plan pour une comparaison équitable des entrées de détection sous la forme de
boîtes englobantes. Pour cette expérience, nous avons travaillé sur les ensembles de données
UA-Detrac et Urban Tracker. Les résultats montrent que le détecteur par apprentissage est
capable de fournir de meilleures entrées pour le suivi, si un grand ensemble de données est
disponible pour permettre un entraînement suffisant. Par contre, il ne fonctionne pas très
bien sur un ensemble de données de plus petite taille avec une grande variabilité des scènes.
À l’inverse, les entrées de la méthode basée sur la soustraction d’arrière-plan ne sont pas très
robustes dans le cas d’un ensemble de données contenant du bruit en raison des mouvements
de la caméra et des perturbations environnementales. Nous avons observé que la soustraction
d’arrière-plan donne de meilleurs résultats lorsque la taille de la base de données est limitée,
car elle est capable d’identifier des objets inattendus dans la trames sans entraînement intensif
préalable.

En somme, notre analyse montre l’importance d’une bonne extraction des objets en MOT, car
les erreurs de détection se propagent souvent dans le pipeline de suivi et affectent sévèrement
les performances de la méthode de suivi. Nous avons également étudié les types de détecteurs
(supervisés et non supervisés) avec différents ensembles de données et nous concluons que
différents ensembles de données nécessitent différentes manières d’extraire efficacement les
objets pour l’application du MOT. Finalement, en dehors de cela, nous avons également
démontré que la stratégie que nous proposons d’utiliser les informations d’étiquettes de classe
et l’évaluation de la qualité des prédictions améliorent significativement les performances de
suivi.
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ABSTRACT

Multiple object tracking (MOT) is an intensively researched area that have evolved and
undergone much innovation throughout the years due to its potential in a lot of applications
to improve our quality of life. In our research project, specifically, we are interested in
applying MOT in urban traffic scenes to portray an accurate representation of the road user
trajectories for the eventual improvements of road traffic systems that affect people from all
walks of life.

Our first contribution is the introduction of class label information as part of the features
that describe the targets and for associating them across frames to capture their motion into
trajectories in real environment. We capitalize on that information from a deep learning de-
tector that is used for extraction of objects of interest prior to the tracking procedure, since
we were intrigued by their growing popularity and reported good performances. However,
despite their promising potential in the literature, we found that the results were disappoint-
ing in our experiments. The quality of extracted input, as postulated, critically affects the
quality of the final trajectories obtained as tracking output. Nevertheless, we observed that
the class label information, along with its confidence score, is invaluable for our application
of urban traffic settings where there are a high number of variability in terms of types of road
users.

Next, we focused our effort on fusing inputs from two different sources in order to obtain a
set of objects with a satisfactory level of accuracy to proceed with the tracking stage. At this
point, we worked on the integration of the bounding boxes from a learned multi-class object
detector and a background subtraction-based method to resolve issues, such as fragmentation
and redundant representations of the same object. We decided to employ a better formulation
to account for the spatial distance between objects that is used during the data association
process. In our proposed tracker, the tracking paradigm is also improved with an evaluation
of prediction quality, where a prediction is used as a trajectory element when occlusions
and interactions among objects cause difficulty in matching them during some frames in the
video.

Given the challenges that we have encountered during the research progress, we were moti-
vated to perform a systematic and quantitative study to compare and evaluate the effects
of supervised detections and unsupervised detections on our tracking performance. Our pro-
posed tracker now includes ReID features in data association due its effectiveness reported
in some of the more recent literature. We adopted a newer and more powerful deep learning
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detector and a modified version of a state-of-the-art background subtraction method for a
fair comparisons of inputs in the form of bounding boxes. For this part of the thesis, we also
worked on the UA-Detrac dataset in addition to the Urban Tracker dataset that we have
used previously. The results have shown that while the learned object detector is capable of
giving better inputs that aid tracking on large-scale dataset that facilitate sufficient training,
it is not performing very well on a dataset that is smaller in size but with high variability
of scenes. Conversely, inputs from background subtraction-based method might not be very
competitive in datasets that contain noisy elements due to camera movements and environ-
mental perturbations. However, we have observed that it actually gives better results when
handling urban scenes with limited size as it is capable of identifying unexpected objects in
the scene without prior intensive training.

In summary, our analysis has shown the importance of good extraction of objects in MOT,
since the errors in detecting them often propagate down the pipeline and severely affect
the performance of the tracker. We also investigated the types of detectors (supervised and
unsupervised) in different datasets and concluded that different datasets require different
ways of approaching the problem when it comes to extract the objects effectively for the
application of MOT. Finally, apart from that, we have also demonstrated that our proposed
strategy of using class label information and prediction evaluation has significantly improved
the tracking performance.
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CHAPTER 1 INTRODUCTION

1.1 Background

According to a report by the United Nations [5], the world population is booming at a
rapid pace and is expected to reach 9.7 billion by the year 2050. Urbanization is spurred
by this trend and massive migration to large cities is continuing because of better economic
opportunities. The rapid development and inevitable population growth of these cities and
urban areas, however, are contributing to traffic congestion and other mobility problems.

The growing traffic demand far exceeds the road network capability during peak hours,
causing the roads to be more congested and increasing queuing. Such deterioration of traffic
conditions have caused much inconvenience to the road users and to public transportation
that uses those same infrastructure, as well as induced massive inefficiency in the traffic
network. Studies from [6] and [7] have shown that traffic congestion severely impacts the
environment with higher noxious gases emission, and a greater carbon footprint. The air
pollution critically affects the physical health of citizens, resulting in more reported cases
of chronic respiratory diseases in recent years [8]. Various studies in the past [9, 10] have
revealed traffic congestion to be a source of stress that affects the driving behavior on the
roads as well. In addition, prolonged traffic congestion will leave the drivers in a state of
fatigue, causing them to be more prone to reckless driving and thus potentially leading to
a higher rate of accidents. The time of each individual getting stuck in the traffic is wasted
instead of being spent on important and precious moments in life such as family bonding and
engaging in activities that promote self-improvement physically, mentally and spiritually. It
is apparent that this phenomenon of traffic congestion causes deterioration in the quality of
life for all citizens in varying degree.

Fortunately, some possible solutions to these problems may be found in Intelligent Trans-
portation System (ITS). It is envisioned that better data collection will improve analysis and
management of the traffic in real-time. The control system of an ITS can improve traffic
by matching the demand with transportation supply. Traffic control requires good real-time
data on all the road users in the traffic to fully interpret and analyze the traffic states accu-
rately and efficiently. Consequently, the task of tracking all road users in traffic scenes with
constantly changing conditions is of utmost importance.

Currently, transportation departments have many cameras installed to manually monitor the
traffic and to detect unexpected incidents. However, many of them are from older technology
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with low quality images and some are even still in analog format. These videos are recorded
with low frame rates and high compression rates, making it difficult for automatic processing.
The current progress in the imaging technology, on the other hand, has led to the availability
of high performance cameras with high image quality and low price. Video surveillance
systems with these cameras provide an attractive and economical platform for data collection
and automated traffic monitoring. The footage of the various road users from the cameras
could be processed and analyzed, where the resulting information may be used for the purpose
of traffic control, safety analysis and behavioral analysis.

It is envisioned that the evolving technological approaches in recent years and in the near
future will be able to fully capitalize on these higher quality image data to produce a more
thorough and efficient analysis as well as processing of information on the traffic conditions,
even in complicated urban traffic scenes with various variables to eventually improve the
traffic system in the long term.

1.2 Problem Statement

Given that multiple object tracking (MOT) holds much potential in collecting invaluable
traffic information such as vehicle counting and trajectories in urban traffic scenes, we pro-
pose it as part of the potential solutions that can be integrated in an ITS for improved
traffic management. Nevertheless, despite its growing popularity and attention in the field
of transportation, there are still much to be addressed and resolved [2, 11].

In the context of this thesis, we are interested in solving the MOT problem in urban traffic
scenes that involve a number of moving objects under good visibility condition with an online
approach, as defined in Section 2.1. The road users are the objects of interest to track in
the MOT task and they include pedestrians, cars, bicycles and heavy vehicles. The term
road users may be used interchangeably in the rest of the thesis with the terms “objects”
or “targets”. The ideal output for this task is to produce trajectories that represent the
movements of targets in the traffic scene as they move in the actual traffic environments in
real-time.

However, in the process of detecting the moving road users for tracking, it is common to
encounter object deformation or poor object localization due to occlusions in crowded scenes.
Erroneous or mistaken detections resulting from occlusion may propagate the inaccuracies to
the tracking stage. The problem of occlusion (see Figure 1.1) greatly impacts the trajectories
as the target is completely or partially obstructed and thereby is no longer visible to the
road user detector. It is difficult to detect such objects due to their variability in appearance
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when occluded. In some case, objects may simply be not detected, or there might be false
detections due to similarities with the environment or non-targets in the background.

Figure 1.1 Examples of occlusions in urban traffic scenes.

Additionally, depending on the type of object detectors, there is the problem of distinguishing
between a split and a fragmented object. Splitting objects occurs when two different targets
in close proximity move together before moving to different directions, which could be a
common occurrence at traffic intersections. Fragmentation, meanwhile, is a problem when
there are some pixels in the target that is not detected as the foreground region, causing the
object to appear to be broken into pieces (see Figure 1.2). Different works have attempted
to solve this issue with varying degrees of success [12–16].

Figure 1.2 Example of fragmentation of target [1]

Another common problem is the variation of illumination and appearance in the video. An
effective tracking algorithm therefore has to take into consideration the illumination or ap-
pearance change by updating the tracker. Due to the presence of various targets in MOT, the
interaction between different objects in the scenes may complicate the update process even
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more over time. That is, an object description should not be updated when an object is partly
hidden, because that representation will not be the real appearance of the object. Hence, an
efficient tracker requires the capability of frequent updates of description for each road user
to avoid propagation of inaccurate representation that can cause failed tracking. The object
description should also capture the appearance with a good precision to avoid confusion and
tracking errors (see Figure 1.3). A single feature like color is not always sufficient.

Figure 1.3 An example of different objects with similar color appearance.

Research on MOT for transportation applications has been in large part focused in highway
settings [17,18], where there is less variety in the types of road users and more homogeneous
movements of road users and therefore the task is less challenging to solve. On the other
hand, this project aims to propose a MOT approach to be used in cities and urban areas with
signalized intersections as shown in Figure 1.4. The potentially complicated interactions and
trajectories of the different road users, including stopped vehicles, pedestrians and cyclists,
make the task even more challenging and difficult than the conventional constraints faced by
MOT solutions. The change of orientation and appearance of the different objects due to
varying pose and rotation as they move in the scenes remains one of the major challenges to
be addressed. Dealing with detection errors is another major challenge in urban scenes.

1.3 Definition of MOT

The term “objects” in MOT, also known as targets, refers to image areas from a video
frame that are distinct from their surroundings and pose certain significance such that we
are interested in their movement in the subsequent frames. Objects in MOT are attributed a
unique identity (ID) to distinguish them throughout a video sequence. In urban traffic scenes,
the objects of interest would be the different road users such as pedestrians and different
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(a) (b) (c)

Figure 1.4 Examples of selected traffic scenes of urban traffic.

vehicles. By definition, detection is the localization process performed on the image frames
to extract image area of the targets. Detection responses, often referred to as “Detections”,
are the end result from the detection process, in which extraction of specific targets such
as vehicles are obtained either with a supervised or an unsupervised method. Tracking is
the localization of the multiple objects across multiple frames. A trajectory is a sequence
of positions over time that represents each object and is the main output from the tracking
process. One trajectory consists of multiple detection responses of a unique target. It should
not be confused with a tracklet that is used in some works in the literature [19], which is
the intermediate stage between detection responses and trajectories. A tracklet is obtained
by linking confident detection responses that are believed to belong to the same target. It
is shorter in time span compared to a trajectory and is a subset of the whole trajectory of
the object. The final trajectories could eventually be constructed by progressively linking
tracklets, as shown by Figure 1.5.

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

Figure 1.5 Examples of detection response (left), tracklets (center) and trajectories (right) of
two separate targets across six frames from t1 to t6 [2](version 3)

Data association is the matching process for the different detection responses for each of the
targets across frames. In short, the ultimate objective of MOT task is to produce from object
detection the trajectories of all targets with a high level of precision.
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1.4 Research Objectives

Given that there are a number of existing problems with regards to MOT in urban traffic
settings, specifically missing detections, occurrence of occlusion and similarity of appearance
among targets, this research work intends to address a number of existing problems with
regards to MOT. The main objective of this project is to propose and develop a MOT
solution tailored for the application in urban traffic scenes that contain varying types of road
users simultaneously, taking into consideration the interaction among the targets as well as
with the background.

This project aims to achieve three fundamental research objectives, specifically:

1. To study and compare object detection methods to extract the different targets (road
users) from the background of video frames, accounting for the common issues in MOT,
such as occlusion, fragmentation, false and missing detections.

2. To define and propose suitable features or combination of features to represent the
targets that address variations in illumination and appearance to better distinguish the
multiple targets from one another. The targets would be analyzed according to these
specific characteristics for the tracking task.

3. To propose a data association strategy that performs satisfactory matching of targets
across frames and is capable of handling appearance variations, possible fragmentation
and objects with similar appearance, forming trajectories that represent targets with
high accuracy.

1.5 Contributions

The main contributions of this thesis are presented in the form of published papers (Chapter 4,
Chapter 5 and Chapter 6):

• In the first paper (Chapter 4) that covers objectives 1 to 3, we proposed a MOT strategy
that incorporated a modern object detector. We have also proposed the novel use of
class label as a component of combination of features that is used in the data association
process. We evaluated the method on the Urban Tracker dataset [20].

• In the second paper (Chapter 5) that covers objectives 1 and 3, we proposed to fuse the
detections from both a supervised and an unsupervised approach to give better inputs
for our tracker. We have also improved our tracking framework by incorporating the
quality evaluation of track prediction for better final tracking outputs.
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• In the third paper (Chapter 6) that covers objectives 1 and 2, we performed a thor-
ough evaluation of a supervised detector and an unsupervised detector on the tracking
performances on Urban Tracker dataset [20] that we have experimented before as well
as on the UA-Detrac dataset [3]. A more recent detector is employed with the training
and testing performed on the new dataset. We also added ReID features as part of our
feature combination that represent the targets during the tracking process.

1.6 Thesis Structure

This thesis is structured as followed: Chapter 2 delves deep into the current works that have
been presented and proposed recently in a similar context of MOT. Chapter 3 gives an overall
presentation of the process of approaching and solving the MOT problem in this thesis. The
subsequent chapters (Chapter 4, Chapter 5 and Chapter 6) are the published articles as a
result of the research done in this project. Chapter 7 presents an overall discussion of the
works and experiments performed throughout the project, including some initial unpublished
attempts at the early stage of the research. Last but not least, Chapter 8 provides the
conclusive remarks as well as recommended ideas for future directions of the research in
similar context.
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CHAPTER 2 LITERATURE REVIEW

The approaches proposed to solve the MOT task have evolved throughout the years. On
a broader scale, there are several aspects of the MOT problem that have been targeted for
improvement over time. In this chapter, we are going to explore the previous works and
the current literature presented on the different strategies that have been used to tackle
the problem of MOT. The proposed approaches can often be viewed as modular solutions,
focusing on

• Object Extraction (detection)

• Data Association

• Object Description

• Object Prediction

Nonetheless, there are recent trends that have attempted to combine some of these steps
simultaneously in their tracker implementation.

2.1 Types of MOT solutions

In terms of implementation, several categories of proposed approaches were used in MOT
applications throughout the years, as shown in Figure 2.1.

MOT
solutions

Near-Online
Tracking

Online
Tracking

Offline
Tracking

Figure 2.1 Trends of MOT approaches.

Online tracking, also known as sequential tracking [19, 21–25] processes only current and
past frames, hence the data association is performed in a step-wise manner with real-time
applications. Nonetheless, imprecise tracking can propagate the errors such that it leads to
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difficulty in tracking recovery in some cases. On the other hand, offline tracking, also known
as batch tracking or global tracking [26–29] utilizes all the frames (past, current and future)
in its solution. With additional information from the future frames, offline methods can
often produce results with higher accuracy, benefiting from global and optimal approaches,
but often at the cost of high computation and memory requirements. As indicated by the
name, near-online tracking [30, 31] offers a sweet spot between robust offline methods and
efficient online methods, optimizing only a few recent frames at the same time. It does not
produce trajectories immediately but does it after certain number of frames, thus avoiding
some local optimal errors.

2.2 Extraction of Objects

In order to follow an object, we need to see it first. For initiating the tracking task, the objects
are first detected. From the traditional extraction of objects in a frame through digital image
processing techniques, the emerging trends in recent works have turned to detection based
on convolutional neural network (CNN) for extraction of objects to capitalize on its good
performance in the field of object detection. CNN is a class of deep learning networks that
have been popular with applications of computer vision due to its ability to process visual
information effectively in images. In the following, we will present the object extraction
methods that were used in previous works, as well as some highlights of the works to provide
context.

[32] proposed a feature based tracker, Traffic Intelligence, which is an open source project that
adapted an implementation of the Kanade-Lucas-Tomasi tracker described in [33]. It used
grouped features points obtained from sparse optical flow, with consideration for multiple
entrance and exit regions, variable trajectories as well as possible feature track disruption. [32]
used optical flow to estimate the motion of pixels in an image using a constraint on brightness
constancy. The proposed algorithm performed the feature grouping by a graph construction
where the vertices represent feature tracks and the edges represent grouping relationship
between the tracks. However, since the method is based on optical flow to extract objects,
stopping of objects can disrupt tracks and thus cause track fragmentation.

[20] chose to utilize the background subtraction method called ViBe to extract unknown
road users from a scene due to missing or false detection that could be given by object
detectors at that time. Background subtraction methods learn to separate objects from the
background using the color contrast between the pixels in the current frames and the pixels
of a reference background frame. They are typically unsupervised methods and can detect
any classes of objects. However, objects can be fragmented into parts. In the work of [20],
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a modification to the background subtraction approach is performed to handle intermittent
object motion in urban traffic scenes, producing objects of interests outputted in the form of
blobs. This was to solve the problem of cars being absorbed into the background when they
stopped at red lights. Low-level blob matching is first performed in the “low-level” tracking
step to form short tracklets (s-tracklets), which are then later assigned to object tracks. This
process is applied to deal with object fragmentation typical of background subtraction-based
detections.

The tracker proposed by [34] applied background subtraction to extract the moving objects
of interest and complemented those with bounding boxes obtained with the VOT (Visual
Object Tracker) called Kernelized Correlation Filters (KCF) in urban traffic scenes. A VOT
uses appearance to propagate a bounding box in the following frame. In contrast to a MOT
method, it is designed to track one object at a time. In this case, the tracking with KCF
was initiated with background subtraction when new objects were appearing. Combining
bounding boxes from a VOT and background subtraction allowed better tracking consistency
during occlusions, as background subtraction cannot separate occluding objects.

[35] proposed a combination of background subtraction and pre-processing steps that in-
volves the edges of targets for the purpose of object extraction. Optical flow is used to
handle occurrence of occlusion. The goal of that work was to diminish the inconvenience of
background subtraction by separating occluding objects and by merging object fragments.
The foreground obtained in blobs from the background subtraction is merged if they are close
in proximity and have similar optical flow. If the objects are moving in different directions
according to the optical flow, a decision will be taken on the information to construct a
new foreground image. This method is capable of eliminating the shadow that came with
background subtraction as well as adjusting the size of the original foreground blobs to allow
more accurate tracking.

[22] utilized the deep learning detection approach called Faster Region CNN (Faster R-
CNN) in its implementation, noting that better detector gives better tracking results in
the end. Object detectors learn the appearance in the image of predefined object classes
using machine learning techniques. The advantage of these methods is that the objects are
detected as a whole, and are not fragmented. The objects can also be separated during
partial occlusions. However, these methods cannot detect unexpected objects as they are
trained on predefined classes. Given the success of object detectors, [36] used a CNN-based
network for the extraction of objects that aids the tracking task. Similarly, [37] compared
several detectors, such as Faster R-CNN [38], Recurrent Rolling Convolution (RRC) [39] and
TuSimple [40] detectors to extract objects of interest in their MOT method and RRC, a



11

single stage end-to-end trainable object detection architecture, is reported to give the best
performance in the proposed framework.

In the approach by [41], the inputs to the tracker are a pair of RGB detection images with
binary body masks from Mask R-CNN [42] in order to focus only on the object’s appearance
and not the background context. Indeed, methods such as Mask R-CNN detect objects in
an image, as well as segment them. If the segmentation is successful, this allows even a
better handling of object occlusions since overlapping bounding boxes might give confusing
appearance information.

[43] used both a person detector and a body joint detector as their inputs to their proposed
tracker, where the joint classifier was trained with the PoseTrack dataset from [44], as an
effort to capitalize on the joint information to boost the performance of pedestrian tracking
task.

2.3 Data Association

Data association is a major component in MOT and many innovative approaches have been
proposed in this direction to improve the performance of MOT. Popular choices for matching
the objects across frames are online approaches, such as bipartite graphs solutions that use
only past and current frames, as well as offline approaches such as graph networks that
uses future frames too. In the following, we will summarize various strategies used for data
association. Most methods aim at filtering possible associations to reduce complexity and
remove impossible pairings of objects between frames, while favoring the most likely ones.

2.3.1 Using object states and hierarchical data association

First of all, MOT methods often attribute states to object tracks, and states influence the
behavior of data association. For example, the tracker by [45] uses a state machine that
defines “Initial”, “Entry”, “Activate”, “Occluded” and “Exit” states on the targets. The
assignment of target is performed with a greedy search approach, but tracks in the “Exit”
state are ignored, and tracks in “Activate” state are associated in priority versus tracks in
the “Occluded” state where the appearance of objects is more ambiguous.

UrbanTracker proposed by [20] employs a Finite State Machine (FSM) for data association in
MOT to handle blob merging, splitting and fragmenting. The “high-level” tracking involving
joining short tracklets (s-tracklets) into final tracks that are assigned in the FSM and a
track life cycle (entering, exiting, visible) is represented in this manner. Interpretation of
s-tracklets triggers the transition of states. A track stays in “Normal” state if an s-tracklet
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with unique source and destination blobs are added without ambiguity. A track that cannot
be linked to a s-tracklet transitions into “Lost” state, and it can be moved to “Deleted” state
if it is not able to correspond to available s-tracklets consecutively for a certain number of
frames. An unassociated blob that can be linked to a track in the “Lost” state will transition
the said track into “Normal” state. However, unassociated blobs that are not linked with
any active tracks would be put into “Hypothesis” state to take into account the occurrence
of noisy and unstable tracks. In such case, s-tracklets that can be added to this track for
more than three frames would be moved to “Normal” state, and the ones that cannot will be
removed. Evaluation of tracks for object exiting, splitting of tracks and fragmentation are
also proposed with keypoints being taken into consideration and with the involvement of the
“Hypothesis” state. The data association in this work is more complex because background
subtraction can give fragmented objects.

[34] proposed Multiple Kernelized Correlation Filter (MKCF) that utilizes multiple KCF
for each of the target for the data association based on the correspondences of the proximity
and the internal model of the VOT. Regions of targets were extracted and processed with
several morphological operations such as median filtering, closing and hole filling to obtain a
list of final candidate object regions. They are later compared with the tracker outputs and
different states (tracked, occluded, new, invisible) are defined depending on the overlaps and
the previous states. In order to handle occlusion, groups of objects are labeled as being inside
a specific group, where the search is performed from redundant KCF trackers among other
group members for tracker re-assignment when a member split from the group. Therefore,
in this work, data association is only local with respect to the tracked objects.

2.3.2 Using bipartite graphs

Several works in the literature employed the use of bipartite graphs to perform the data
association, where the matching of objects is implemented between two frames.

[46] used the Kuhn-Munkres algorithm, also known as the Hungarian algorithm for the
association of tracklets and new detections for a global optimal result with a two-stage
matching strategy. The matching is initially implemented between detections and tracklets
with high tracking quality before moving on to the matching between detections and tracklets
with lower tracking quality that are shorter in length. This strategy lowers the possibility of
erroneous associations.

In the work by [47], an online divide-and-conquer strategy with Correlation Clustering is
used, where global assignment of objects are partitioned in local sub-problems and resolved
via selective choice and combination of the best visual features. Their unified structural
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learning framework involves the “Divide” step that break into localized association problems
and “Conquer” step that selectively combine preferred visual features from an extended
Hungarian algorithm-based association scheme. A Latent Structural Support Vector Machine
(SVM) framework is applied to combine these two steps and learn the tracker parameters.

[22] proposed the Simple Online and Realtime Tracking (SORT) method that applies the
Hungarian algorithm in a minimalisitic and efficient manner of tracking-by-detection, and yet
achieves comparable performance with other state-of-the-art (SOTA) methods. Extending
the work of [22], [48] used the Hungarian algorithm in a similar manner as well.

[30] proposed the Near-Online Multi-Target Tracking (NOMT) algorithm, where the hy-
pothesis generation and selection scheme for choosing the hypothesis in graphical model are
framed as an energy minimization framework. The single target consistency is computed
based on the compatibility between the hypothesis and detections from their proposed met-
ric. The Hungarian algorithm is integrated in the work to perform matching and a Kalman
filter is used to obtain continuous trajectories from the discrete detection sets.

In the work by [49], pairs of detection-object with minimal structural variation would be
associated preferentially and a total probability framed with both appearance and structure
cues is proposed. Objects are categorized into matched and unmatched using the Hungarian
algorithm after taking into consideration the structural variation cost, followed by the search
of the nearest neighbour with intersection over union (IOU) criteria.

In the work by [21], following their previous work in [19], high confidence and low confidence
association are introduced to solve the data association problem of MOT. Reliable tracklets
with high confidence values have the priority to be locally associated with the detections first,
followed by the tracklets with low confidence in global association. The tracklet-detection
pairs are assigned by the Hungarian algorithm.

From a probability hypothesis density particle filter framework, [50] exploits both high and
low confidence targets from detections. The low confidence detections (weak) are used to
support the label propagation whereas the high confidence detections (strong) are used for
both label propagation and target initialization. The Hungarian algorithm is used in early
association among the predicted states. The early association strategy allows the newly
generated particles to inherit the properties of the associated state or to be initialized as a
new target.

In the tracker by [51] that deals with multiple targets and multiple cameras, the data asso-
ciation is solved by using correlation clustering that is capable of inferring missing objects
by enforcing transitivity. All the pairwise associations are considered and the identities are
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jointly optimized. In order to reduce complexity, multi-level reasoning with sliding temporal
window is employed: the first level produces tracklets that last for one second, the second
level associates the tracklets into single camera trajectories, and the last level subsequently
associate them into multi-camera identities.

[52] presented the IOU tracker that leveraged on the good detection results of newer object
detectors, using IOU of bounding boxes to fill in the “gaps” that were missed out by the
detectors, with the assumption that the frame rate for the video is sufficiently high for
such approach. Assignment of detections to the tracks is performed based on the threshold
set on their IOU. Despite the simplicity, this tracking-by-detection method was extremely
competitive with the SOTA methods of their time. [53] further extended this work with the
inclusion of visual information to handle cases of ID switches and fragmentation with the
V-IOU tracker. Due to the fragmented nature of the tracks in the original IOU tracker, a
gap filling task is further implemented via a VOT, propagating the objects across frames by
using the visual information. To account for the false detection that might interfere with the
tracking process, the resultant tracks are filtered according to the detection confidence, with
the integration of VOT in both forward and backward direction through the last few frames.

[54] proposed a unified framework with switcher-aware classification (SAC) in data associa-
tion. A switcher is defined as the potential identity switch caused in the MOT context. The
switcher-aware classifier, which is implemented using boosting decision trees, is employed to
decide whether to use the features from the main target or the switcher to encode poten-
tial switcher information and improve robustness to handle the problem of identity switch.
Both the long-term and short-term cues are gathered by the switcher-aware method and with
potential switcher, scores for matching are generated. The Hungarian algorithm is used to
match the tracklets with Kalman filter to smooth the final trajectories.

[55] proposed an instance-aware tracker that integrate VOT as a MOT solution via the
encoding of awareness from both within and between target models with a dynamic model
refreshing strategy. The awareness is implemented in both the target and global level, for
each target, a KCF framework is applied, and features to distinguish target from background
or other instances are fused. This method uses detection only for the purpose of model
uniqueness verification to achieve spatial exclusiveness and model refreshing to update the
model in response to the scale change of moving targets in detection. The difference be-
tween the target and the background as well as the difference among the different targets
are modelled in the objective function of the proposed approach. The resultant events are
“Tracked”, “Occlusion”, “Enter” and “Exit” for the targets observed, according to assump-
tions imposed on these events. For the case of occlusion, classification is performed and
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followed by association via the Hungarian algorithm to obtain the final matching pair.

2.3.3 Using graphs that span many frames

[29] reviewed the classical Multiple Hypotheses Tracking (MHT) method and rehabilitate it
with online discriminative appearance model, resulting in a method known as MHT-DAM in
the MOT setting and achieved comparable performances with other SOTA methods at that
time. The MHT method consists in building a graph with all possible object associations
between frames given some constraints, and then finding paths in that graph that optimize
a global score. Their version of MHT allows less restrictive assumptions on the motion of
objects and thereby makes it less sensitive to the choice of parameters in the framework.
With a tracking-by-detection approach, the MHT maintains multiple trees that represent all
hypotheses from a single observation. They are kept active until the ambiguities of data
association are resolved.

In order to handle complex interacting objects in MOT, [56] proposed Causal And-Or Graph
(C-AOG) to utilize the causal relations between object’s visibility fluent and its activities.
In mathematics terms, a fluent [57] is defined as the time varying status of an object. In the
C-AOG graph, there are four levels: 1) visibility fluents, 2) possible states and agent actions,
3) the Or nodes representing the alternative causes in visibility fluents and state levels,
and 4) the And node representing the event that can encompass several atomic actions. A
probabilistic model is applied to reason about the change from visible to non-visible or vice
versa.

[36] proposed an end-to-end graph network that captures appearance and motion similarity
separately. Unlike its static graph predecessors, the proposed method allows the updating of
nodes, edges and global variables. A four-step graph network encompassing edge updating
module, node updating module, global updating module and edge updating module was
introduced in the proposed method. Hungarian algorithm is also used by [36] for data
association with the dynamic graph. For handling missing detections, a VOT is used to track
the missing objects in the current frame and perform association with recovered bounding
boxes with high confidence score. A linear motion model is used to recover missing detections
for a longer period of time.

Instead of using the tracking-by-detection paradigm, [43] explored the use of body joint
detections in the MOT problem as it describes positions of person in a bottom-up way. The
near online tracker was presented by solving MOT problem as a min-cost graph labeling
problem with temporal sliding window.
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[28] model the MOT problem as a minimum cost lifted multicut problem, where the lifted
edges allow long-range information on the nodes to be joined or cut without modification on
the set of feasible solutions. Long-term false joints are penalized by forcing valid paths in
the feature solution. The proposed combination of both regular and lifted edges in the graph
allows encoding of long-range person re-identification (ReID) information such that it forces
valid paths along the local edges.

In the work by [41], hierarchical clustering of tracklets is achieved by formulating it as a
minimum cost multicut graph problem. The tracklets are iteratively merged with repeated
decomposition of a graph with their proposed Constrained Kernighan-Lin with Joins (CKLJ)
algorithm that imposes constraints of joining the edges of the tracklets when dealing with
high similarity edges.

In their proposed method, Structural Constraint Event Aggregation (SCEA), [58] introduced
a cost function that consider global camera motion in the data association process with
anchor assignment that makes sure that the centre location of an object coincides with the
detection. Structural constraint and assignment events are also taken into consideration
in the event aggregation to reduce assignment ambiguities from missing detections. All
possible assignment between objects and detections are made based on the anchor assignment
and structural constraints that are represented by location and velocity differences between
objects. Instead of one-by-one matching, all the costs with the same assignment event but
different anchor assignments are aggregated. A reduction approach that consists of gating
and partitioning is later implemented to remove negligible assignments.

[31] proposed a non-uniform hypergraph learned automatically from a SVM that models
different degrees of dependencies among tracklets, exploiting these cues in a computationally
efficient way for MOT application.

2.3.4 Using deep learning

[59] jointly performed detection and tracking in a single neural network architecture with
optimized parameters. An object detector, Single Shot MultiBox Detector (SSD) is adapted
by serving the additional convolutional layer that outputs appearance features to a Recurrent
Neural Network (RNN), combining them into tracks. The outputs of the detector is used as
inputs to the RNN, with the use of an association metric (the Hungarian algorithm) integrated
in the permutation layer. Track score based on track confidence, detection confidence and
association confidence are thus computed.

[60] proposed the use of Recurrent Neural Network (RNN) in their fully end-to-end deep
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learning approach to achieve online tracking of objects without prior knowledge, such as
target dynamics or clutter distribution. The proposed method utilized the available public
detections provided by the dataset. The RNN is used for temporal prediction and track
management update and a long short-term memory (LSTM) network is used to solve the
combinatorial problem of data association. [60] also uses additional variable in the loss func-
tion of the RNN to accommodate for the nature of the MOT task that has varying numbers
of objects across frames. However, the accuracy of the tracking results is not as competitive
as other existing methods.

Another end-to end solution, called Quadruplet Convolutional Neural Network (QUAD-
CNN), was proposed by [61] for the MOT task by performing association of objects across
frames with quadruplet losses, taking into consideration the appearance of objects and their
temporal adjacencies. Additional constraints are imposed to make sure that the temporally
adjacent detection are located more closely. In order to realize better localization, a multi-
task loss is used to jointly learn object association and bounding box regression. Minimized
label propagation is achieved in data association by utilizing learned distance metric from
the paired detections.

For handling drift problems resulting from occlusion and interaction among targets, [23]
proposed the Spatial Temporal Attention Mechanism (STAM) method that utilizes a spatial-
temporal attention mechanism to favor possible pairings during data association. A motion
model is also integrated in the method to capitalize on the motion information.

In the method by [62], a decision network made up of a reinforcement learning method is used
to combine prediction and detection results to let each agent (object in the scene) maximize
their shared utility (long term reward). The objects are either visible or invisible whereas
the action sets are update, ignore, block and delete.

[63] proposed an early integration of the detection and tracking tasks for MOT via a two-
stage detector that uses tracklet-based conditioning in both region proposal generation and
classification. Both stages have Region Proposal Network (RPN) head added to perform
tracklet-conditioning in their designed network. Association of tracklets is performed by a
modified maximum bipartite graph matching.

In the work by [64], the Hungarian algorithm is used to assign the trajectories in a deep
track association after the extraction of comprehensive appearance features and computation
of their affinities. In their deep track association strategy, the track set is initialized with
multiple trajectories with time stamps of the frame. The affinity matrices are computed
efficiently using Deep Affinity Network (DAN) to look back into the existing tracks with
each time stamp.
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In order to capitalize on a visual attention mechanism that focus on most relevant regions
for more discriminant features, [65] proposed Dual Matching Attention Networks (DMAN)
that used both spatial and temporal attention mechanisms. The former mechanism generates
dual attention maps that allow the network to focus on matching patterns of input image
pair whereas the latter allocates different levels of attention to different samples in a tracklet
in an adaptive manner to suppress noisy observations and improve data association results.
For the temporal attention network, a Bi-directional Long Short-Term Memory (Bi-LSTM)
is used to predict the attention value without being influenced by the noisy samples.

[66] proposed the Markov Decision Process (MDP) framework to model the lifetime of an
object as a MDP, solving the MOT problem as an ensemble of multiple MDP. The similarity
function of data association is equivalent to policy learning for the MDP. Taking into account
all the possible transitions of states that represent the targets over time, [66] proposed differ-
ent reward functions for policies in active state, tracked state as well as lost state. The MDP
is viewed as an inverse reinforcement learning problem, where reward function is learned
from the ground truth trajectories. The Hungarian algorithm is later used to perform the
final data association based on the similarity scores.

[67] proposed an RNN structure that jointly reasons about multiple cues over a temporal
window, where the motion and interaction models used LSTM for handling long term oc-
clusions. The proposed RNN structure is comprised of three RNNs for appearance, motion
and interaction, which are combined by a target RNN that outputs the similarity between a
target and a detection. Inputs for the appearance RNN are the results from appearance fea-
ture extractor whereas the motion RNN takes velocity vectors as input. For the interaction
RNN, occupancy grids centred on a specific target is used as the input in order to incorporate
previous motion of the targets, as well as the behaviour of the neighbouring targets. The
computed similarity score used in data association is performed by reasoning on sequence
of observations. [67] jointly trained their target RNN in an end-to-end manner with their
component of their feature RNN (appearance RNN, motion RNN and interaction RNN).
The output vectors of the feature component are concatenated and act as the input to the
target RNN that learns the long-term dependencies of cues for data association, where the
Hungarian algorithm is then used to perform optimal assignment, using the MDP framework
proposed by [66].

For solving MOT in crowded area with long-term occlusions, [68] proposed a three-step pro-
cess for the tracklets which involves generation, cleaving and re-connection using a Siamese
Bi-Gated Recurrent Unit (GRU) for tracklet-to-tracklet association. In the tracklet genera-
tion step, detection candidates and tracked candidates are matched in bipartite graph with
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the Hungarian algorithm, followed by the tracklet cleaving step that used a bidirectional
output GRU to obtain reliable tracklet and split tracklets that are unreliable. Both forward
GRU and backward GRU share the weights and the resultant distance from the features
are used for the cleaving and re-connection steps. With the imposed temporal and spatial
constraints on the set of cleaved tracklets, the remaining tracklets are re-connected using
IOU.

[69] proposed a MOT strategy that formulates a network flow problem as a function of
pairwise association cost. The directed network flow graph is formulated with a cost that
model the interplay between birth, existence, death and association of detections in the
scene. The video is broken down into chunks and solved as different linear programming
(LP) problems, resulting in different sets of trajectories that are associated using bipartite
graph matching.

[70] proposed the use of Recurrent Autoregressive Network (RAN) to couple an internal
memory and external memory for each object trajectory from the objects in the frame.
It characterizes the appearances and motion dynamics of targets over time. Each RAN
corresponds to an object of interest and data association is performed via bipartite matching
by computing the likelihoods of object detection as presented by the distribution models from
the RAN.

[24] proposed an end-to-end method called FAMNet (Feature extraction, Affinity estima-
tion and Multi-dimensional assignment) that refined in a single deep network where all the
layers are differentiable. Following the formulation of Rank-1 Tensor Approximation (RITA)
framework proposed by [71], hypothesis trajectories generated from detections are passed
into FAMNet to compute local assignments, where the affinity sub-network in the form of
Siamese networks is used to extract the features of candidate patches. Two levels of affin-
ity are computed for each hypothesis trajectory: pairwise affinity and long-term affinity of
hypothesis trajectory. [24] adapted a different iteration scheme from RITA to fit the process
into the deep neural network framework. The tracking process is performed by integrating
detection and VOT, where an anchor candidate (candidate in the middle frame of the batch)
that misses detection will connect with the virtual candidate given as prediction of VOT.

[72] proposed Tracktor, a MOT paradigm that originated from a detector, where the regres-
sion head of a detector is exploited to perform temporal realignment of bounding boxes of
objects of interest. The proposed method was designed to be hassle free and free of specific
training or complex optimization, hence it is targeted for simple scenarios instead of occluded
or crowded scenes. By pooling features on the current frame using the bounding box of previ-
ous frame, the IOU is used to decide if the track would be deactivated. To account for a new
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object, the initialization is done using the detection as new trajectory with the assumption
that it is not an occluded object from the existing active trajectories.

[73] proposed a point-based framework called CenterTrack that jointly detects and tracks.
An object of interest is represented as a single point in the bounding box. The end-to-
end trainable and differentiable tracker works by offsetting the center of the object from its
current frame to its previous frame. The association is performed via a greedy matching
which is later performed based on the distance between the predicted offset and a detected
center point in the previous frame.

In an effort to promote real-time MOT, [74] proposed a shared model that jointly learns target
detection and appearance embedding simultaneously in a single shot deep network. With
a Feature Pyramid Network (FPN) architecture, feature maps at three scales are obtained
from a forward pass through the backbone network. Fusing of feature map is performed after
with prediction heads. The learning of appearance embedding is performed with the use of
a cross entropy loss. The Hungarian algorithm is used for the assignment of tracklets.

[75] proposed the TrackletNet Tracker that combines temporal and appearance information
in a unified framework with an undirected graph model. Tracklets are represented as vertices
in the graph and the edge between them represents the similarities between the connected
tracklets, where the measure of similarities known as connectivity is used in the multi-scale
tracker. Assuming that the size of bounding boxes in adjacent frames remains unchanged
and with epipolar geometry constraints, the cost function is reformulated into a least square
problem during tracklet grouping.

For association of tracklets, [76] computes the IOU of the tracklets and perform tracklet
removal with a threshold. The notion of anchor tube used in this method is extended from the
concept of anchor boxes in object detection [77] with the inclusion of temporal dimension in
the application of MOT. As a filtering process, a Tube None Maximum Suppression (TNMS)
is used to cluster the detected tubes of the same categories into multiple groups by the IOU.
The final tubes for each group that has the maximum confidence of being positive are used to
update the trajectory. The Hungarian algorithm is then used to update the track set based
on the IOU matrix.

[78] proposed Chained-Tracker (CTracker) that paired attentive regression results as well
as integrated object detection, feature extraction and data association into an end-to-end
solution. A chain node is defined as two adjacent frames. Each frame is being used twice as
part of different bounding box pairs known as chain node, resulting in a group of chain nodes
being fed into the tracker. To generate long trajectories, node chaining is done sequentially
over all adjacent nodes, where IOU between the boxes are computed and the Hungarian
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algorithm is used to match the detections between different pairs of frames. The resultant
box pair for each target from the paired boxes regression branch is achieved by simultaneous
regression of two boxes with chained-anchors, which are densely arranged on spatial grid.
In the tracker, a joint attention module was introduced with its predicted confidence maps,
highlighting informative spatial regions with two other branches. One branch, known as
object classification branch, works by predicting the confidence scores of the first box among
the detected box pairs, where the scores guide the regression branch to the foreground regions.
The other branch, known as ID verification branch, produces prediction that allows the
regression branch to focus on regions corresponding to the same target. Due to the nature
of node chaining, a memory sharing mechanism is employed to reuse the features to reduce
computational complexity. Extracted features of the current frame are temporarily saved
and reused until the processing of subsequent nodes.

[25] proposed RetinaTrack that originated from the single stage RetinaNet approach by [79]
via some effective modifications on its post-FPN prediction subnetworks. For the purpose of
tying or untying weights in a different manner than the vanilla architecture, the detection
anchors are forced to split among the post-FPN prediction layers to access the intermediate
level features. A third sequence of task-specific layers are applied to project instance-level
features to a final track embedding space. The strategy of predicting instance-level features
per-anchor is followed by a greedy bipartite matching of embedding vectors to associate the
objects across frames using a track store that holds stateful track information.

Finally, [80] defined a fully differentiable framework based on Message Passing Networks
(MPN) by exploiting the natural graph structure of the MOT problem to perform both
feature learning, as well as final solution prediction. Direction prediction is learnt to find
the edges in the graph that will be active for data association via classification. Time-aware
update rules are proposed to aggregate the graph into two parts: one over the nodes in the
past, and another one over the nodes in the future.

2.4 Object Description

Various features and embeddings (mappings in CNN that represent discrete variables as
continuous vectors) have been proposed to provide the bases for the methods proposed in
this work, starting from the conventional colour histogram, spatial and motion features to
the more recent ReID features that are gaining popularity recently. These are mainly used
together to give the best representation of targets to be tracked in MOT solutions.
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2.4.1 Handcrafted features

[29] used pixel appearance features obtained from bounding boxes of a trained model of
multiple linear regressors in their proposed MHT-DAM framework. The incorporation of
appearance likelihood is reported to have significantly reduced the number of branches in
their method, thereby achieving effective pruning of hypothesis to save memory.

[45] proposed the fusion of multiple features in a Dempster-Shafer framework in MOT. A
sparse appearance model and a color model are used in this method. A score matrix to
compare the similarity between two consecutive frames is computed and the accumulated
score vector from each feature is used in a combined probability map with Dempster-Shafer
rule of combination. The method uses detections obtained from an object detector based
on classic machine learning techniques with HOG features and an SVM. The quality of the
detections were not very good at that time, but detection of pedestrians (single object class)
were sufficiently good for tracking.

The tracker by [47] uses appearance information that are computed as the average value
of Kullback-Leibler distance of color histograms, in addition to motion coherence that is
modeled by the smoothness of manifold fitted to the joint set between the track spatial
history and new detected point.

In the tracker by [20], collection of keypoints of the extracted foreground regions were used
to interpolate locations of targets. These keypoints, extracted from Binary Robust Invariant
Scalable Keypoint (BRISK) [81] and described using Fast Retina Keypoint (FREAK) [82],
are used with the extracted foreground blobs to better discriminate the objects in the scenes
for handling occlusion, splitting, merging and fragmentation in a robust manner. A saved
history of appearance information and positions for the tracks are also used to determine the
transition of track states.

In the work of [22], complex features are avoided on purpose to minimize complexity in
general and to allow fast and reliable implementation in real-time tracking. For handling
short-term occlusion, IOU distance on the bounding box coordinates are used to correlate
the occluder with the detection, whereas the covered object is unaffected and remained as
an unmatched object.

2.4.2 Learned features

[48] extended the work of [22] by integrating an appearance descriptor from a pre-trained
CNN and motion information to allow tracking during longer occlusion. In DEEPSORT, [48]
integrated a learned association metric on a large scale people ReID dataset as a pretrained
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step to further improve the tracking performance. The Mahalalobis distance computes the
distance between predicted objects with a Kalman filter and newly detected objects by taking
into consideration the state uncertainty via the standard deviation of the detection from the
mean track location.

[46] proposed the Person of Interest (POI) tracker where distance between deep learning-
based appearance features is used as the affinity score with a cosine distance used to measure
it. In addition, motion and smoothness affinity are also used to obtain the final affinity
between tracklets and detections.

In the work by [59], spatial distance, object appearance features provided by the deep network
of the detector, detection score and track score are combined as the affinity metric.

Focusing on interaction of objects of interest with the surroundings objects, [56] introduced a
fluent variable that denotes visibility status over time for objects of interest in their proposed
method: visible, partially or fully occluded and contained. The fully occluded state and the
contained states are distinguished by observing the motion independence, coupling actions
and object fluent changes and visibility in the alternative view points. For the tracklet
generation, objects’ position and appearance from the average pooling of image descriptor
over time of deep network is used.

[83] proposed spatial-temporal relation network (STRN) that uses representation of tracklet-
pair similarity. Combination of cues includes deep appearance from CNN, location and
topology over long period of time in the computation of similarity scores to capitalize on the
information in both spatial and temporal domains. The spatial-temporal relation network
is initially applied on each frame to strengthen appearance representations in the spatial
domain, which are then aggregated in the temporal domain. The aggregated feature is then
concatenated to represent tracklet-object pair and produce a similarity score.

[49] introduced a structural invariance constraint that jointly reasons about color histogram
features and structure cues without having to manually adjust their respective parameters.

The work by [66] used appearance, location, size and history of the target as feature represen-
tation in their proposed framework. The appearance model is constructed by using an image
patch of target in a video frame as a template. The similarity between a target and detec-
tion is encoded by the feature vector based on the status and the history of target from the
reinforcement learning algorithm. Constrained optical flow information in a neighbourhood
from each template is used as well.

In the work by [84], extracted appearance features from fully connected layer of CNN are the
inputs that are multiplied with the LSTM memory matrix in their proposed Bilinear LSTM
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architecture.

[21] proposed a deep appearance learning method that learns a discriminative appearance
model of objects. During the learning process, pairs of the same objects and different objects
are used as the input.

In the work of [85], the video is fed into a two-stream backbone structure to obtain 2D feature
maps and a spatial-temporal feature map, which are then squashed and concatenated.

[64] proposed Deep Affinity Network (DAN) to jointly extract pre-detected features in mul-
tiple abstraction and pair the permutations of those features in any two frames to infer
object affinities in an end-end manner. The two-stream convolutional network uses shared
parameters to estimate the object affinities in later layers from initial layers without as-
suming the input frame pair to have similar appearance. In the feature extractor, layers
of the network are empirically selected to reduce the number of feature maps and feature
vectors from these layers are concatenated to represent an object. The affinity estimator
works by mapping combinations of object features to a matrix that codes feature similarity,
with gradual dimension reduction along the depth of the tensor. The method also takes into
consideration the appearance and disappearance of multiple objects between video frames
by enabling the softmax layer of the network to look forward and backward in time for the
unidentified objects. The network loss is made up of four sub-losses: forward-direction loss,
backward-direction loss, consistency loss and assemble loss.

TrackNet proposed by [85] incorporates a Tube Proposal Network (TPN) to predict the
objectness of each candidate tube and their location parameters. Tube proposals are chosen
due to their ease for obtaining all spatial-temporal locations in one shot as well as availability
of global and local context in the spatial-temporal domain. A spatial transformer is used
to transform and concatenate features from different viewing angles. Objectness score are
predicted in the tube classification module, where anchor tubes (generated from duplication
of the same bounding boxes across multiple frames) with high overlap are selected as positive
proposals. The tubes are ranked according to the objectness score and go through the second
stage of classification and regression. Position offsets for the tube are refined and tube pooling
is performed via the union of all bounding boxes in a proposal tube.

In the tracker of [73], tracking-conditioned detection requires the current frame, previous
frame and a heatmap rendered from tracked objects as input, outputting center detection
heatmap of current frame, bounding box size map and an offset map for the association pro-
cess. Due to the nature of its point-oriented representation, the detections are conveniently
rendered in a class-agnostic single-channel heatmap in the training process.
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In the method by [36], appearance features are obtained from the output of a CNN and
motion features are obtained from the displacement between objects and detections. [68]
used appearance features from CNN as well as motion cues from the dimension of their
bounding boxes for matching the tracklets in the first stage of their proposed method, which
are further processed in subsequent stages. Temporal and spatial cues are used in the cleaving
and re-connection stages.

In [62], the agents (objects in the scene) are represented by locations, learned appearance
features from a deep network and trajectories. Similarly, visual and spatio-temporal cues are
used by [41], but extracted from tracklets instead of detections to resolve lengthy occlusions.
The pairwise detection visual appearance is learned by a CNN and the spatio-temporal feature
is learned by two bidirectional RNNs to compute the similarity of compared tracklets. While
the visual appearance features are independent of the sequence of the detections, the spatial-
temporal features take it into account as it is fed into the RNNs in both forward and reverse
direction.

In addition to appearance and motion features, [30] proposed the use of Aggregated Local
Flow Descriptor (ALFD) that encodes relative motion using long-term interest point trajec-
tories for tracklet pairwise affinity measure.

[37] used position in terms of IOU, appearance and optical flow as affinity metrics in their
proposed MOT approach. The appearance affinity is obtained from re-identification feature
vectors. Inspired by [30], [37] developed an optical flow affinity that uses the Lucas-Kanade
sparse optical motion algorithm [86] that tracks the points regardless of the detections. The
keypoints for the optical flow are obtained from training a stacked hourglass network of
vehicles keypoints from Pascal 3D dataset [87].

[43] integrated person’s pose in their tracker, hence in measuring the joint-to-body spatial
feature, affinities involving Barycentric distance, x-y-offset, angle in the reference box and
distance in the reference box, Euclidean distance and scaled distance of the pose keypoints
are applied. Taking into account the difficulty of missing joint detection, a post-processing
step is performed when associating the detections in sliding window to remove redundant
detections of the same person.

In order to deal with unexpected camera motion, [58] proposed a structural motion constraint
between objects that is represented by location and velocity difference between objects. [58]
used their proposed structural constraint to recover missing objects caused by camera motion
and occlusion in the second step of their two-step approach.

In the work by [23], deep features are obtained from the pooling of ROI and they are weighted
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by spatial attention. For weighing the features, learning of a visibility map of each target is
performed to infer a spatial attention map. While the spatial attention mechanism is mainly
for feature extraction, the proposed temporal attention mechanism strikes a good balance
between historical and current visual cues of the targets involved.

Prior to obtaining appearance similarity, [65] exploited motion cues to select candidate detec-
tions. Detections surrounding the predicted locations from VOT are considered as candidate
detections if they are not covered by tracked target. The appearance affinity is subsequently
measured between the detections and the observations from the target trajectories. A spatial
attention network with Siamese architecture is applied to the features to capture the high
level-information from the top layer of the convolutional network.

[88] used both visual and temporal features in their work to account for the object-motion and
ego-motion. In the proposed architecture called STED (Spatio-Temporal Encoder-Decoder),
for the encoder component, a GRU is used to extract temporal features from the bounding
boxes from past frames, whereas a CNN-based encoder extracts motion features from optical
flow directly. The compact representation of the history of bounding boxes from the former
is combined with the latter that contributes information from both object motion and ego-
motion.

In the work by [28], deep features of paired identities are used as the input to their proposed
tracking framework. Spatio-temporal relations, dense correspondence matchings and person
re-identification matchings are the pairwise features used in the proposed method.

[70] used appearance and motion features as input to their tracking framework. The ap-
pearance features are extracted from the detector feature maps and the motion dynamics
features are computed from the bounding boxes.

In the work by [24], the affinity sub-network fused discriminative higher order appearance
and motion information into the affinity estimation. Similarly, in the work by [69], motion
and appearance feature learnt from deep network in the detection are used in their proposed
solution.

[89] proposed a light-weight sequential Generative Adversarial Network architecture that
can be easily trained on limited data for predicting the trajectory of targets, taking into
consideration the motion of pedestrian as well as the other pedestrians in the local neigh-
bourhood, thereby modeling their interactions and contextual information. In the detection
framework, the frames are passed through the encoder of the generative model. The LSTM
layer maps the temporal relationships between the encoder embeddings of the appearance,
and the decoder in turn maps them to a probability distribution that classified whether the
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object is a pedestrian.

In the work by [72], a motion model and re-identification vectors are used as features. The
proposed method was built on the assumption that the object changes only very slightly from
one frame to another, hence camera motion compensation is used for sequences with moving
cameras, and a constant velocity assumption is used on sequences with low frame rates to
accurately produce bounding box positions on the targets. Stored deactivated trajectories and
detections are compared in terms of distance and re-identified with a Siamese neural network.
Similarly, the tracker by [25] included a ReID component and camera motion compensation
to further capitalize on these information to improve the tracking performance.

For the affinity score in the tracker proposed by [21], a tracklet is represented by appearance,
shape and motion models. The appearance model is obtained by the extraction of features
of image pairs using forward propagation with L2 distance. This is achieved by minimizing
the output feature distance of the same object pairs and maximizing the feature distance of
the different pairs with online transfer learning to account for the variation of the data. The
shape affinity is computed based on the height and width of the bounding boxes. The motion
affinity is taken from the distance within the frame gap with an underlying assumption of
Gaussian distribution.

In an effort to incorporate ReID features in the application of MOT with multiple cam-
eras, [51] assembled a pipeline that uses a triplet loss function, focusing on the appearance
features obtained from ResNet that underwent data augmentation, motion correlation and
optimization.

The tracker of [54] incorporates both long-term and short-term cues. A short term cue is
obtained from a subnet containing a VOT method, whereas a long-term cue is extracted
from a ReID subnet. A quality-aware mechanism is employed to select the image sequence
from the tracklet history with a quality filter in order to ensure quality and robustness. The
long-term feature generation is achieved by feeding the selected images and the detection
result to be matched into the ReID subnet.

In the work of [74], a tracklet is described with an appearance state and a motion state.
The tracklet appearance is initialized from the appearance embedding from ReID network of
the first observation. The motion state contains the bounding box centre position, bounding
box height, aspect ratio and velocity. The cosine similarity is employed to compute the
appearance affinity, whereas the Malalanobis distance is used to compute the motion affinity.

[55] used fused features that incorporates instance awareness that distinguishes between
target and background as well as other instances. Feature map on the coordinates at the
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centre of tracked target and their detection are extracted and stacked to be fed into a CNN-
based classifier.

[53] used the IOU of the spatial overlap to describe the objects of interest in their tracking
method. The work by [75] used appearance similarity and IOU of consecutive detections as
embedded features in their proposed tracker.

[76] proposed a Deep Motion Modeling Network (DMM-Net) that estimate motion param-
eters of multiple objects to achieve joint detection and association in an end-to-end manner.
The proposed network contains different sub-networks that predict object motion parame-
ters, object classes and their visibility by exploiting the feature maps in the learned video
sequence from a feature extractor based on the 3DResNet network by [90]. The network
processes multiple frames simultaneously by introducing the notion of anchor tubes in the
temporal dimension of MOT. The best matching track is searched and encoded into an an-
chor tube, it can be viewed as data preparation for DMM-Net. The motion model of the
tracker is interpreted as a quadratic model in time and the motion loss function is the sum of
smooth L1 losses between the ground truth encoded tracks and the predicted encoded tracks.

Finally, in the work by [80], appearance embedding from CNN and geometry embeddings
from the relative position size and distance in time were concatenated and used for tracking.

2.5 Object Prediction

While some tracking methods already have some built-in prediction mechanism during the
phase of data association, there are approaches that have explicit object prediction component
in the tracking task to further fix the incorrect trajectories of the objects and to favor good
potential matches. This is useful during occlusions where bounding boxes can be poorly
positioned or absent. Several prediction methods can be used. We present some of them in
the following.

In addition to data association, [22] used a Kalman filter to predict the bounding boxes of
objects to further improve the accuracy of the tracked objects. A Kalman filter is state
estimator that accounts for noise and missing observations.

The work of [50] utilized prediction at an early stage of their tracking method with the
assumption that all targets move in an independent motion with constant velocity. In this
case, the constant velocity model is used based on past observations. To handle the cases of
possible target acceleration variations, noisy detections and camera motion that may generate
erroneous predictions, the states of target over a large time interval are averaged.

In the work by [89], the motions of objects are predicted from a trajectory prediction frame-
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work given by historical trajectories that passed through a LSTM encoder. For the motion
prediction framework, a soft attention context vector is used to embed the trajectory infor-
mation of the targets, and another hardwired attention context vector is used to embed the
neighbouring trajectories.

In [89], the LSTM architecture of the encoder generates an output at each time step whereas
the LSTM architecture of the decoder produces only one single output after considering a
whole sequence. The short-term prediction is used for data association while the long-term
prediction is used for updating the trajectory of the objects in the presence of occlusions and
other image artefacts.

[62] proposed collaborative deep reinforcement learning (C-DRL) that simultaneously detects
and predicts objects in a unified network using deep reinforcement learning. Each object is
modeled as an agent and the prediction of their location is performed based on trajectory
histories and appearance information using collaborative interaction between objects and the
environment. A decision network is applied for the update, tracking and deletion of objects.
For the prediction network, positive examples from all the training data are pooled together
by merging the annotated ground truths and detections information, where IOU among them
are considered valid.

[37] proposed the use of tubelet interpolation to handle cases of fragmentation in estimating
the trajectories of objects. Using the optical flow information, the empty gaps of trajectories
of lost objects are filled from the interpolation of bounding boxes, with the assumption that
the movement of these objects follows a linear velocity model.

In the work by [88], the decoder component of their proposed method is used to generate
predictions of future bounding boxes via a GRU, in which the concatenated features from
the encoder are fed into.

In the RAN proposed by [70] that temporally model a generative framework for MOT, the
external memory consists of input vectors in the previous time steps and the internal memory
encodes information about the combination of template to predict the probability distribution
of the next input.

The Bilinear LSTM by [84] acts as a building block of a predictor model for MOT application.
The proposed algorithm uses Multiple Hypothesis Tracking (MHT) framework to predict
whether the bounding boxes belong to each given track, using the learnt intuition from
recursive least square for long term online predictions.

The tracker proposed by [74] used a Kalman filter to smooth the assigned trajectories by
predicting the locations of previous tracklets in the current frame. Assignments that are
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spatially too far away from the predicted locations will be rejected.

Finally, to enhance robustness against occlusions, CTracker by [78] retains terminated track-
lets and their identities that are unmatched for a certain number of frames and a constant
velocity model is used to predict the bounding boxes, the chain node process thereby includes
these predictions for matching across the nodes.

2.6 Evaluation of MOT Performance

Performance of the tracking procedure are commonly evaluated using CLEAR MOT metrics
[91], namely multiple object tracking accuracy (MOTA) and multiple object tracking precision
(MOTP).

MOTA takes into consideration all configuration errors from all the frames by the tracker,
including false positives, misses and mismatches. Mismatches are caused by the occurrences
of mistaken swapping of objects’ identities when they are close to one another.

MOTA = 1−
∑

t(mt + fpt +mmet)∑
tgt

(2.1)

where mt, fpt and mmet represents number of misses, number of false positives and number
of mismatches respectively. gt is the number of objects present at time t. Equation 2.2 to
2.4 are the ratio of the three errors respectively.

m =
∑

t mt∑
t gt

(2.2)

fp =
∑

t fpt∑
t gt

(2.3)

mme =
∑

t mmet∑
t gt

(2.4)

MOTP evaluates the capability of tracker in estimating the precision of target without regards
on its ability in recognizing object configurations and keeping consistent trajectories.

MOTP = 2 ∗
∑

i,t d
i
t∑

t ct

(2.5)

where dt
i is the distance in estimated position for matched object-hypothesis pairs and ct is

the number of matches made.
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2.7 Summary

Much progress has been in development in recent years in the evolving field of MOT. In gen-
eral, most MOT solutions follow an architecture that involves detection, appearance modeling
and data association with prediction to obtain the final trajectories of objects of interest in
the traffic scenes.

With the intensive progress and the surging rapid pace of deep learning techniques being
introduced and applied in the application of MOT, we have observed that there is a recent
trend that newly proposed methods combine the different modules in the framework con-
currently, such as merging of detection and appearance modeling by an implicit appearance
modeling like in Tracktor [72] and CenterTrack [73], achieving success of varying degrees.

For the extraction of objects, the trend of using deep learning-based detection approaches
has dominated the more recent works as the problem of fragmentation can be avoided. Still,
this choice prevents the tracking of unexpected objects. Therefore, ideally, both of this
approaches would have to be combined.

Also, we have observed that more recent methods include deep features in addition to clas-
sical features, such as the combination of bounding box information with description of the
appearance with deep features.

In terms of data association, the Hungarian algorithm remains a popular choice for online
MOT application, whether it was used in the simplest conventional manner or in supplement
to more complicated association schemes.

In order to further improve the performance of trackers, some works have additional predictive
steps to fix the gaps in the final trajectories or perform some restoration on the evaluated
track qualities. These component can greatly enhance the final outputs and critically removes
potential problematic trajectories that can adversely affect the final results. In some works,
prediction is also used in the data association stage to match the objects across frames.
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CHAPTER 3 OVERVIEW OF THE METHOD

This chapter details the way the research problem of MOT in urban traffic is tackled and
presents the development of our proposed solutions as they progressed and evolved over time,
as documented by the three published papers.

We first started our work by devising a general MOT framework that underwent improve-
ments over the course of this thesis. The classic MOT framework as illustrated in Figure 3.1
is used. The first paper presents the first version of our proposed MOT method, and the
following papers iteratively improve its components.

Object
extraction

Object
description

Data
association

Prediction Tracks

Figure 3.1 The general MOT framework used in this thesis.

3.1 Article 1: Multiple Object Tracking in Urban Traffic Scenes with a Multi-
class Object Detector

The initial idea of this paper stemmed from our earlier attempts at working on producing
good inputs into a MOT in urban settings (see chapter 7). It was observed that most existing
research works on road user tracking at that time were applying the unsupervised approach
of foreground extraction to obtain the regions for the targets. There was a growing spike of
interest with regards to the deep learning detectors that were gaining momentum with good
reported results. We had an interest in evaluating their performance in the context of MOT
and a motivation to integrate the results from the R-FCN detector [92] as the component for
the extraction of targets, acting as input for our proposed tracker. Due to the limited size of
data available for training, the detector was pretrained and refined on another dataset that
is similarly on traffic scenes before being used to produce detection on our dataset of choice,
Urban Tracker [20].

At the same time, given that our proposed urban traffic tracker deals with varying types of
targets in the scene, we were inspired to capitalize on the class label information provided
by the detector as the part of the feature combination for data association. The use of class
labels in the proposed solution is very unique because most works focus on tracking a single
object class (e.g. cars or pedestrians). In this project, several classes of objects are to be
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tracked. An ablation study demonstrated the effectiveness of the class labels in improving
the tracker performance. The data association component of the proposed tracker utilizes a
Kalman filter for predicting the location of the targets in the subsequent frames whenever
there is no matched detection with respect to the existing tracks, in similar fashion as the
work by [22].

3.2 Article 2: Tracking in Urban Traffic Scenes from Background Subtraction
and Object Detection

The results from Article 1 have inspired us to propose a strategy for fusing multiple sources
of foreground extraction for our proposed tracker. Indeed, on the Urban tracker dataset, the
detections of R-FCN were not very good. Therefore, in this paper, the combination of the
detections from both background subtraction and a multiclass object detector is proposed.
IOU is applied on the bounding boxes from these two sources to determine if they are indeed
referring to the same object. At the same time, bounding boxes that are presumably missed
out by one of the methods are added if they are matching in terms of IOU or colour similarity,
which are the criteria for inclusion as a valid input for the tracker. With this, the proposed
tracker is able to address the problems of fragmentation from the background subtraction
approach as well as the elimination of the bounding boxes from the false detection originating
from the supervised multiclass object detector.

For the feature combination, previously the Jaccard distance was used as the spatial distance.
As a replacement, a different spatial feature formulation that averages the four corners of the
bounding boxes is adopted, taking into consideration the dimension and scales that represent
the objects as they move across frames. This allows better handling of bounding box size
errors.

The overall quality of the tracks is also evaluated and applied according to a set of criteria
to avoid the final tracking outputs being impacted by unreliable prediction.

3.3 Article 3: Supervised and Unsupervised Detections for Multiple Object
Tracking in Traffic Scenes : A Comparative Study

As a continuation from the previous works, our proposed tracker is modified by including a
new feature, a re-identification feature (ReID) into our feature combination since this type of
feature was proven to be an effective indicator in many recent works. Effectively, our proposed
tracker (now called MF-Tracker) utilized both classical features (spatial distance and colour
histogram) as well as modern features from deep learning (detection labels and ReID). Instead
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of R-FCN detector [92], the RetinaNet [79] detector, a more powerful and effective deep
learning detection approach is employed on the existing dataset that was experimented before,
that is the Urban Tracker dataset [20] as well as on a new dataset, the UA-Detrac dataset [3].
Given that the size of the dataset of UA-Detrac is sufficiently large for training and testing,
more thorough experiments are performed to study the effects of supervised detection (deep
learning detector) and unsupervised detection (background subtraction) for a documented
comparison of their performances on MOT. Different combinations of baseline trackers with
both types of detection as well as our own tracker are evaluated on both the Urban Tracker
dataset and UA-Detrac dataset. This paper provides important insights on the advantages
and drawbacks for deciding to use one of the two detectors.
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CHAPTER 4 ARTICLE 1: MULTIPLE OBJECT TRACKING IN URBAN
TRAFFIC SCENES WITH A MULTICLASS OBJECT DETECTOR

Hui-Lee Ooi, Guillaume-Alexandre Bilodeau, Nicolas Saunier and
David-Alexandre Beaupré,

published at International Symposium on Visual Computing (ISVC), August
2018

Abstract

Multiple object tracking (MOT) in urban traffic aims to produce the trajectories of the differ-
ent road users that move across the field of view with different directions and speeds and that
can have varying appearances and sizes. Occlusions and interactions among the different ob-
jects are expected and common due to the nature of urban road traffic. In this work, a tracking
framework employing classification label information from a deep learning detection approach
is used for associating the different objects, in addition to object position and appearances.
We want to investigate the performance of a modern multiclass object detector for the MOT
task in traffic scenes. Results show that the object labels improve tracking performance, but
that the output of object detectors are not always reliable.

4.1 Introduction

The objective of multiple object tracking (MOT) is extracting the trajectories of the different
objects of interest in the scene (camera field of view). It is a common computer vision
problem that is still open in complex applications. This paper deals with one of these
complex applications, urban traffic, that involves different kinds of road users such as drivers
of motorized and non-motorized vehicles, and pedestrians (see Figure 4.1). The various road
users exhibit different properties of moving speeds and directions in the urban environment.
Their size vary because of perspective. Besides, road users are frequently interacting and
occluding each other, which makes it even more challenging.

In this work, we want to investigate the performance of a modern multiclass object detec-
tor [92] for the MOT task in traffic scenes. We are interested in testing MOT in urban traffic
settings with road users of varying sizes using an object detector while most previous works
in such applications employ background subtraction or optical flow to extract the objects of
interest regardless of their size. Our contributions in this work is an assessment of a typical
model object detector for tracking in urban traffic scenes, and the introduction of label in-
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formation for describing the objects in the scenes. Due to the variability of objects found in
urban scenes, the label information should be a useful indicator to distinguish and associate
the objects of interests across frames, thereby producing a more accurate trajectory. In this
paper, the improvements obtained thanks to classification labels are evaluated with respect
to a baseline tracker that uses a Kalman filter, bounding box positions and color information.

The results show that using classification labels from a detector improves significantly track-
ing performances on an urban traffic dataset. Therefore, multiple object trackers should
capitalize on this information when it is available. However, they also show that the outputs
of a multiclass object detector are not always reliable and not always easy to interpret.

4.2 Related Works

MOT in urban traffic scenes was previously studied in [20], where the use of background
subtraction is proposed for detecting the objects of interest followed by updating the object
model with a state machine that uses feature points and spatial information. In fact, most
previous work in MOT uses background subtraction or optical flow to detect the objects. The
reason is that historically, methods based on pre-trained bounding box detectors are difficult
to apply to road user tracking scenarios because it is difficult to design a detector that can
detect and classify every possible type of road user from various viewpoints. However, recent
progress in deep learning [92,93] make this avenue now possible and worth investigating.

When using background subtraction, the detection results give blobs that can correspond to
parts of objects, one object, or many objects grouped together. The task is then to distinguish
between merging, fragmentation, and splitting of objects. This is the main drawback of this
method, since under congested traffic conditions, road users may partially occlude each other
and therefore be merged into a single blob. Examples of trackers based on background
subtraction include the work of [94], [95], [96], [97], [98], and [20]. For data association, they
typically use the overlap of foreground blobs between two frames or a graph-based model for
data association using appearance information, such as textures, color or keypoints. These
approaches track objects in a merge-split manner as objects are tracked as groups during
occlusion. The Hungarian algorithm is a classical graph-based choice for solving object
assignment problems. To compensate for the missing detections, the Kalman filter is a
popular option for estimating the location of the object of interest. A basic implementation
of multiple object tracking is proposed in [22] using this approach.

With optical flow, objects are detected by studying the motion of tracked points in a video.
Feature points that are moving together belongs to the same object. Several methods ac-
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Figure 4.1 A frame from the urban traffic dataset that shows several road users in an inter-
section.

complish this process using the Kanade-Lucas-Tomasi (KLT) tracker [99]. The following re-
searchers have proposed such trackers, often called feature-based: [100], [101], [32] and [102].
For example, the algorithm proposed by Saunier et al. [32], named Traffic Intelligence, tracks
road users at urban intersections by continuously detecting new features. The main issue is
to select the right parameters to segment objects moving at similar speeds, while at the same
time not oversegmenting smaller non-rigid objects such as pedestrians. Because objects are
identified only by their motion, nearby road users moving at similar speed are often merged
together. The exact bounding box occupied by the road user is unknown because it depends
on the position of sparse feature points. Furthermore, when an object stops, its features flow
becomes zero and feature trajectories are interrupted, which leads to fragmented object tra-
jectories. Using a deep learning-based detector on road users is expected to provide objects
that are less fragmented and that can be tracked whether they are moving or not.

4.3 Method

The proposed method consists of two main components: object detection and data associ-
ation. It is illustrated in Algorithm 1. Object detection involves the extraction of objects
of interest from the frames for further processing. Data association determines the tracking
architecture to ensure the formation of the trajectories of each object in the scene. In order to
match the objects correctly, an assignment cost based on a measure of similarity is computed
for all the potential matches.
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4.3.1 Object Detection

The road users from each frame are detected by using a deep-learning object detection model
from the Region-based Fully Convolutional Network (RFCN) [92] framework due to its effi-
ciency and accuracy. This detector was selected because it was the best performing approach
on the MIO-TCD localization challenge [103]. The pre-trained model is further refined by
using the MIO-TCD dataset [103] to provide the labels of the different road users found in
traffic scenes, belonging to one of the eleven categories or labels: articulated truck, bicy-
cle, bus, car, motorcycle, motorized vehicle, non-motorized vehicle, pedestrian, pickup truck,
single unit truck and work van.

A non-maximal suppression (NMS) method [104, 105] is applied to reduce the redundant
detections of the same road users in each frame.

4.3.2 Data Association

The object assignment or data association is essentially performed on a set of detected objects
from the current frame and a list of actively tracked objects that are accumulated from
previous frames.

For the matched pairings, the latest position of the corresponding object in the track list
is updated from the detected object. In the case of new detection, a new object will be
initialized and added to the track list. In the case of objects in the track list without a
matched candidate from the detection list, i.e. a missing detection, a Kalman filter [106] is
applied to predict its subsequent location in the scene and the track information is updated
using the prediction.

For the matching of objects across frames, if the total cost of assigning object pairs is higher
than a set threshold Tmatch, the paired object would be reassigned to unmatched detection
and unmatched track respectively due to the high probability of them not being a good
match.

Actively tracked objects that are not assigned a corresponding object from the new detections
after Ntimeout frames are removed from the list, under the assumption that the object has left
the scene or the object was an anomaly from the detection module.

Object Assignment Cost Once objects are detected, the subsequent step is to link the
correct objects by using sufficient information about the objects to compute the cost of
matching the objects. The Hungarian algorithm [107] is applied to match the list of active
objects with the list of new detections in the current frame so that the matchings are exclusive
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Algorithm 1 MOT algorithm

1: procedure MOT
2: for ith frame do
3: Extract detections with multiclass object detector
4: if i == 1 then
5: Assign all detections as tracks
6: else
7: for each detection do
8: Compute cost of detection with respect to each track
9: Run the Hungarian algorithm for assigning pairing of detection and track

10: for each matched detection do
11: if Cost > Tmatch then
12: Reassign as unmatched detection and unmatched track
13: else
14: Update the track information from the detection
15: for each unmatched detection do
16: Initialize as new track
17: for each unmatched track do
18: if N > Ntimeout then
19: Remove track
20: else
21: Update track information using prediction from Kalman filter
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and unique. The bipartite matching indicates that each active object can only be paired with
one other candidate object (the detection) from the current frame. The algorithm can make
use of different costs of assignment, with higher costs given to objects that are likely to be
different road users.

Label Cost In order to describe the properties of the detected objects, the labels and
corresponding confidence score from the detections are taken into account. Setting the range
of scores between 0 and 1, object pairs across frames that are more similar will be given a
lower cost. Using the classification labels, object pairs with different labels are less likely to
be the correct matchings, therefore they will be given cost of 1. Meanwhile, when the pairing
labels are the same, the average of the confidence score of each detection are being taken as
the label cost. The label cost is defined as

Clabel =

1− 0.5× (Confi+Confj) if Li = Lj

1 if Li 6= Lj

(4.1)

where Ln denotes the label of detection n and Confn denotes the confidence of the corre-
sponding label of the nth detection.

Jaccard Distance-based Position Cost The bounding box coordinates of the detected
objects are a useful indicator for matching the objects across frames as well. To judge the
similarity of two bounding boxes in terms of proximity and size, the Jaccard distance is
computed from the coordinates of the paired object, where the ratio of intersection over
union of the bounding boxes is computed. This is calculated using

Cposition = 1− |Boxi ∩Boxj|
|Boxi ∪Boxj|

(4.2)

where Boxn denotes the set of pixels of the bounding box of the detected object n.

Color Cost The visual appearance of the objects is characterized by their color histograms
that are used to compute the color cost. In this work, the Bhattacharyya distance is applied
to compute the distance of the color histogram of detections across frames with

Ccolor =
√√√√1− 1√

H̄iH̄jN2

∑√
HiHj (4.3)
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where Hi denotes the color histogram of detection i, Hj denotes the color histogram of
detection j and N is the total number of histogram bins.

4.4 Results and Discussion

To test the RFCN multiclass object detector in MOT and to assess the usefulness of the
classification labels, we used the Urban Tracker dataset [20] since it contains a variety of
road users in an urban environment. Fig 4.2 shows some sample frames from the Urban
Tracker dataset with RFCN detections. The MOT performance is evaluated by using the
CLEAR MOT metrics [91]:

• multiple object tracking accuracy (MOTA) that evaluates the quality of the tracking,
if all road users are correctly detected in the frames they are visible and if there are no
false alarms;

• and multiple object tracking precision (MOTP) that evaluates the quality of the local-
ization of the matches.

To test the contribution of using labels in MOT, the proposed baseline method is applied
with and without object classification labels in the cost computation for data association.
The following parameters are used in the experiments: Tmatch is set at 1.5 and the value of
Ntimeout is set at 5.

Table 4.1 summarizes the results obtained with the baseline tracker. First of all, we were
not able to obtain interesting results on the René-Lévesque video. From the evaluation, it
is observed that the size of the objects greatly influences the performance of the proposed
method because of the shortcomings of RFCN. When the size of the road users is too small,
there are not enough details for the detector to distinguish the different types of objects
reliably. Mis-detections are common in such cases, as observed in video René-Lévesque, for
example in Figure 4.3. Since the frames are captured at a higher altitude than the other urban
scenes, the object detector has difficulties in detecting and classifying the objects clearly due
to the lack of details. On the other hand, larger objects such as buildings have the tendency
of being detected as they share similarities with the features learned by the detector.

Secondly, it can be noticed from Table 4.1 that the MOTA results are negative and disap-
pointing. This comes from the difficulty of interpreting the detections of RFCN. The same
object is sometimes detected as several instances from the object detection module, as shown
in Figure 4.4. This often causes confusion and unnecessarily increases the number of detected
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Figure 4.2 Samples frames with detections from the Urban Tracker dataset

Figure 4.3 Typical detections obtained from the René-Lévesque video.

objects and degrades the reported tracking performance. When there are no consecutive re-
dundant detections, these redundant instances of the same object will usually be removed
after a few frames since the object assignments are exclusive.

Furthermore, contrarily to background subtraction or optical flow-based methods, RFCN
gives detection outputs also for cars that are parked or for a car on a advertising billboard.
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Table 4.1 Comparison of MOTA and MOTP scores for three videos of the Urban Tracker
dataset with the inclusion and exclusion of label cost in the data association (the best results
are in boldface).

No.
objects

MOTP MOTA
with
labels

without
labels

with
labels

without
labels

Rouen 16 0.6870 0.6893 -0.1877 -0.4176
Sherbrooke 20 0.7488 0.7324 0.0266 -0.0023
St-Marc 28 0.7234 0.7136 -0.3657 -0.2749

Therefore, the data association process is distracted by many irrelevant objects. In such cases,
standard NMS is not very useful in a traffic scene. Although NMS is used, it is insufficient
to eliminate all the redundancies.

Since the proposed method is intrinsically dependent on the results from the detection mod-
ule, the mis-detections propagate and deteriorate the overall MOT performance. In this case,
the existence of redundant tracks severely affects the MOTA score such that it falls into the
negative range, as shown in Table 4.1. The MOTA takes into account the number of misses,
false positives and mismatches from the produced trajectories.

However, it can be noted that MOT with inclusion of classification label generally gives
higher MOTA. Among the different classes of labels from the detection module, the non-
motorized vehicle label is currently excluded in the tracking framework since the occurrence
of non-motorized vehicles is very rare in this experiment while parts of the background are
sometimes mistakenly identified as objects from this class. MOTP is sometimes slightly better
without labels as there are cases where tracking of an object fails in successive frames due to
the switch of labels from the detection results. This is because with the labels, some matches
are penalized and rejected because they are higher than the cost threshold. Therefore, the
total number of matches is different, leading to slightly different values for MOTP. This
occurrence is common among classes that share similarities such as pedestrians, bicycles and
motorcycles, resulting in redundant tracks or fragmented tracks for the same object and thus
lowering the overall tracking performance.

4.5 Conclusion

In this paper, the use of a modern multiclass object detector was investigated for the MOT
task in traffic scenes. It was integrated in a baseline multiple object tracker. Results show
that classification labels can be beneficial in MOT. However, the outputs of the multiclass
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Figure 4.4 An example of the redundant detection output for the same object.

object detector are hardly usable because they include a large number of false detections, or
detections of objects that are not of interest in the current application (e.g. parked cars).
Small objects are also difficult to detect. As a result, to use such a detector, its output needs
to be combined with another detector that can focus more precisely on objects of interest
such as background subtraction or optical flow.
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CHAPTER 5 ARTICLE 2: TRACKING IN URBAN TRAFFIC SCENES
FROM BACKGROUND SUBTRACTION AND OBJECT DETECTION

Hui-Lee Ooi, Guillaume-Alexandre Bilodeau and Nicolas Saunier,
published at International Conference on Image Analysis and Recognition

(ICIAR), May 2019

Abstract

In this paper, we propose to combine detections from background subtraction and from a
multiclass object detector for multiple object tracking (MOT) in urban traffic scenes. These
objects are associated across frames using spatial, colour and class label information, and
trajectory prediction is evaluated to yield the final MOT outputs. The proposed method was
tested on the Urban tracker dataset and shows competitive performances compared to state-
of-the-art approaches. Results show that the integration of different detection inputs remains
a challenging task that greatly affects the MOT performance.

5.1 Introduction

The task of multiple object tracking (MOT) is to produce a set of trajectories that represent
the actual real-life movements of the objects of interest across frames. In the context of
urban scenes such as traffic intersection, MOT is performed for the road users (vehicles,
pedestrians, cyclists, motorcyclists, etc.) as objects of interest for the purpose of traffic
control and management to improve traffic while mitigating the adverse impacts. Due to
the nature of such settings, interactions among the objects are expected and frequent, thus
leading to object occlusions. Compared to conventional traffic scenes where the speeds of the
road users are usually more consistent and directions homogeneous, MOT in urban traffic
scenes remains a difficult and challenging task as it deals with objects interacting in different
directions and speeds. Furthermore, because of the typical camera setups used, object scales
varies significantly, which can make them difficult to detect.

The advances and reported good results in recent years of multiclass object detection algo-
rithms with deep learning [108] have prompted us to integrate them into the tracking process.
In addition, the class label information can provide a useful description of objects to help
with their association across frames in the tracking steps. However, the recent work of Ooi
et al. (Chapter 4) has shown that tracking with a multiclass object detector (MOD) is very
challenging since detections are often incorrect or missing. Since the incorrect or missing
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detection of an object at that stage can propagate and leave a huge impact on the final
tracking results, we seek to improve the detection inputs in order to achieve better MOT
results. Therefore, we extend the work of Ooi et al. (Chapter 4) by using as inputs, detec-
tions from both a MOD and a background subtraction algorithm. To handle the problem
of occlusion, a Kalman filter is used for prediction when an object of interest is not seen at
the detection stage. This helps in keeping track of object of interest that might have been
hidden by other objects at certain time steps during the lifespan of the trajectory.

In this paper, we introduce a MOT solution for urban traffic scenes with fused inputs from the
integration of background subtraction inputs [35] with detections from a pre-trained MOD.
Our two main contributions are: 1) a novel method to fuse detections from two sources that
may contradict each other and 2) an object descriptor based on object class labels and their
learned detection confidence.

5.2 Related Works

MOT usually comprises several steps: 1) object detection, 2) appearance modeling, and 3)
data association. A large part of the past literature on MOT emphasized the challenge of
data association [22] and its effect on MOT performance. Researchers proposed sophisticated
data association strategies that often extend the Hungarian algorithm. For example, the Joint
probabilistic data association filter (JPDAF) tracks objects based on the most likely outcome
for each trajectory by considering every detection available, as well as missing or spurious
detections [109, 110]. Another example is the minimum-cost flow algorithm that formulates
the data association problem as finding the shortest path from the apparition of the object
to its last appearance in the scene [111].

On the other hand, object detection is necessary before data association, as poor detections
will severely deteriorate the tracking performance. Hence, some previous MOT solutions have
proposed combining detection methods to allow better object inputs for improved tracking
in the end. The main drawback of using inputs from background subtraction is the difficulty
of distinguishing the merging, fragmentation and splitting of objects. In cases where mul-
tiple road users are in close proximity, partial occlusion will cause the incorrect merging of
these road users. IMOT (Improved Multiple Object Tracking) was introduced by [35] as an
improved version of background subtraction using edge processing and optical flow, convert-
ing blobs of objects into compact bounding boxes that outline individual objects if there is
evidence based on motion that two or more objects were grouped together.

More generally, the MOT problem in urban scenes was tackled several times in the past. A
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combination of background subtraction and feature points were proposed in Urban tracker [20].
Based on detections from background subtraction, objects are described by several keypoints
which provide robustness to partial occlusion as a subset of keypoints can be matched if
they are not all hidden. MKCF [34] was proposed as a solution for MOT, combining the
background subtraction with multiple individual KCF (Kernelized Correlation Filters) sin-
gle object trackers [112]. This method capitalizes on the robustness of newer visual object
tracker. It shows good performances even if it uses rudimentary data association. [32] used
optical flow to detect the motion of objects of interest and the classic Kanade-Lucas-Tomasi
(KLT) framework [99] to match road users from frame to frame. Recently, Ooi et al. (Chap-
ter 4) used a MOD for road user tracking. However, the tracking performance was severely
impacted by the inadequate and inconsistent detections across frames.

5.3 Methods

Three steps are involved in the proposed MOT strategy: (i) Fusion of objects from detection
methods, (ii) Object description, and (iii) The association of objects across frames. Our
proposed method is illustrated in Figure 5.1. It starts by fusing the input from a multiclass
object detector (MOD) and from the improved background subtraction method IMOT. The
resulting object detections are then tracked. Objects are described using colour, position and
the class labels coming from the MOD. Then, data association is performed.

5.3.1 Object fusion

In our proposed method, we integrate the bounding boxes from both IMOT and MOD into
our tracking framework. The MOD objects are the result of the application of a pre-trained
deep learning detection network, in our case RFCN [108], that was fine-tuned on the MIO-
TCD dataset [103] containing varied road users such as cars, buses, bicycles, pedestrians,
pickup trucks, etc. IMOT objects are the results of a post-processing over a background
subtraction method in order to separate erroneously merged road users using edges and
optical flow [35].

The objects from the two sources are matched and filtered before starting the tracking process.
Due to the nature of IMOT objects, there could be some small bounding boxes that are not
relevant as a result of shaking cameras and moving background elements. On the other
hand, MOD objects will include long-term stationary road users that are beyond the scope
of interest of our applications and there are occasions where objects of interest are missed
out (Chapter 4). We hypothesize that the merged inputs can be fed into the tracker to
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Figure 5.1 Overview of our tracking framework. Object detections from two methods are first
fused. They are described and associated across frames using sets of matched and unmatched
tracks and detections. Based on these, the final tracks are outputted.

give more satisfactory tracking results. However, results are often contradictory, sometimes
IMOT gives better results while sometimes, it is MOD. One cannot simply merge the two
sets of detections.

The following fusion strategy is proposed. We assume that all IMOT objects are relevant to
the tracking framework as stray small IMOT objects that are not representative of objects of
interest are filtered out according to size prior to the matching. IMOT objects were shown
to be more reliable. They also had better performance in detecting the objects in the scene.
MOD objects are used to provide class labels and to merge fragmented IMOT objects.

For matching the input objects of both sources, we compared their similarities in terms of
bounding box (BB) overlaps and colour histogram. The BB overlap So is given by

So = Ai ∩Bj

Ai ∪Bj

, (5.1)

where Ai denotes the ith BB from IMOT output whereas Bj denotes the jth BB from MOD
output. We also calculate the colour similarity between IMOT objects and between IMOT
and MOD objects. The colour similarity Sc is given by

Sc =

√√√√1− 1√
ḠH̄N2

N∑
i=1

√
GiHi, (5.2)

where G denotes the colour histogram of a first BB and H denotes the colour histogram of a
second BB. N is the total number of histogram bins. Ḡ and H̄ are the mean of the N bins.

Pairings between IMOT objects and MOD objects are performed based on the overlap of
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the BBs with Equation 5.1 and a threshold To. IMOT objects that are matched with MOD
objects will benefit from the class label information of MOD objects for data association
in the tracking phase. On the contrary, IMOT objects that do not matched with MOD
objects will be fed into the tracker with a dummy class label. There are cases where the
matching is not one-to-one. For instance, several IMOT objects could be matched with the
same MOD object and vice versa, though the latter is a rare occurrence since IMOT objects
are usually smaller in size and more compact. MOD objects, on the other hand, are larger
and often encompassed several objects at the same time. Hence, the merging of input objects
is performed only on the IMOT objects and only if the colour of the objects to merge are
similar enough based on Equation 5.2.

Algorithm 2 describes the process for obtaining the final fused inputs for the MOT task.
If multiple IMOT objects are matched to a particular MOD object, the colour histogram
similarities of the multiple IMOT objects will be compared among themselves using the
Bhattacharyya distance (Equation 5.2) and a threshold Tc. If the similarity is high, then
these objects are thought to be fragmented parts of an object and hence the BB from the
MOD object would be taken as the input for the tracker. If the similarity is low, these
objects will be considered individually in the subsequent steps. Figure 5.2 illustrates how
fragmented parts of an object are fused together to recover the whole object after taking into
consideration the output of the MOD.

Figure 5.2 Example of the merging of objects. Blue BBs: MOD objects, red BBs: IMOT
objects, white BB: resulting fusion of the two inputs into the whole object (pedestrian).

Colour similarity is used for merging IMOT because there are cases where the BB from
the MOD object contains more than one actual object that should not be merged. Hence,
care must taken to handle the different cases. To avoid excessive merging of IMOT objects
that overlap with often large MOD objects, merging IMOT based on pairings between objects
from the two approaches will only be evaluated if there is significant overlap (larger than Tm).
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Finally, when a single IMOT object is matched with multiple MOD objects, the similarity
in terms of BB overlap and colour histogram will be used to determine the final label from
MOD that will be used with the IMOT object.

Algorithm 2 IMOT and MOD object fusion

1: procedure IMOT-MOD Pairing
2: for each IMOT objects do
3: for each MOD objects do
4: Compute overlap of BBs with Eq. 5.1
5: if So >= To then
6: Assign as pairs and update pairing matrix
7: procedure Merging multiple IMOT into single detection object
8: for each MOD objects do
9: if Pair with more than one IMOT then

10: for each IMOT objects that are paired do
11: Compute colour similarity with Eq. 5.2
12: if So >= Tm and Sc <= Tc then
13: Use MOD object as tracker input, discard the IMOT object
14: else Keep IMOT object
15: procedure Update IMOT object with label from paired MOD object
16: for each Remaining IMOT objects do
17: if No pairing found then
18: Use the IMOT as tracker input with dummy label
19: else if One-to-one pairing found then
20: Use the IMOT as tracker input with label from paired MOD
21: else
22: for each Paired MOD objects do
23: Compute Sc and So of IMOT with each MOD object
24: Use IMOT as input with label of MOD object with largest similarity

5.3.2 Data association costs

The cost of assigning pairings among the objects across frames is calculated by using the
Hungarian algorithm [107]. The cost of matching a detected object and a tracked object is
in the range of 0 and 1. The lower the cost, the more likely the two objects are referring to
the same object.

For matching the objects across frames, the spatial cost Cd is measured by the spatial distance
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between BBs of the compared objects using

Cd = 1−max(0, Td − S̄D
Td

) (5.3)

S̄D = 1
4(|xD,min − xT,min|+ |yD,min − yT,min|+

|xD,max − xT,max|+ |yD,max − yT,max|), (5.4)

where xmin and ymin denotes the minimum x and y coordinates, whereas xmax and ymax

denotes the maximum x and y coordinate of an object. T indicates an object that is currently
tracked and D indicates a detected object in a frame. S̄D is the mean spatial distance of
the x coordinates and y coordinates of the four corners of the BBs of the compared objects
whereas a fixed parameter Td is used to penalize objects that are too far and to normalize
Cs.

For describing objects in terms of appearance, colour cost Cc is computed based on the
Bhattacharyya distance on colour histogram as in Equation 5.2, where G denotes the colour
histogram of a detection and H denotes the colour histogram of a currently tracked object.
N is the total number of histogram bins (we used 256).

Finally, the class labels are also considered in the matching cost. Detection confidence is
used in our formulation. Cl is given by

Cl =

1− 0.5× (Wi +Wj) if Li = Lj

1 if Li 6= Lj,
(5.5)

where Li denotes the class label of object i and Wi its confidence value (between 0 and 1).
As we will see in the results, using the confidence value from the MOD, and not just the
class label for the cost is a beneficial strategy since confidence values tend to be similar in
consecutive frames for a given object.

The final association cost is a combination of Cd, Cc, Cl, and is given by

Cfinal = αCd + βCc + γCl, (5.6)

where α, β, γ denotes the weights for the corresponding cost.
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5.3.3 Overall Tracking Framework

In the tracking phase, each input object that appeared at the start of the video will be
included into a set that contains all the active objects, thereafter denoted as the tracked
objects. New input objects in the subsequent frames are denoted as detected objects and
are matched accordingly to the tracked objects. We enforce one-to-one matching using the
Hungarian algorithm [107], since it is expected that there exists only one true object at the
next frame that corresponds to a currently tracked object. In addition, because of the non-
ideal cases caused by occlusions or objects missing from the inputs that are common in urban
scenes, some predictions are used to compensate the shortcomings of the inputs.

Hence, for each processed frame, sets of matched detections, unmatched detections and un-
matched tracks are obtained. Matched detections are essentially the successful pairings of
detected objects and tracked objects. Unmatched detections refers to detected objects with-
out pairing with the existing set of tracked objects. This can be due to the entrance of a
new object into the scene or as a result of spurious detections from the inputs. Unmatched
tracks are when there is no corresponding pairing found in the set of detected objects. This
is usually due to occlusion or being missed by IMOT, but also by objects that have left the
scene.

For each active tracked objects, a Kalman filter is used to get a prediction of its expected
location in the subsequent frame based on its history. If the tracked objects are matched
with the detected objects, the prediction result will be discarded and the tracked object will
be updated with information from the latest matched detected object. In the case where a
tracked object is unable to find a matching counterpart in the set of detected objects, the
prediction result may be used instead if it is deemed good. For each step of a track, the state
or quality of the tracking is defined as “D” (Detection), “GP”(Good Prediction), “BP” (Bad
Prediction) or “UP”(Uncertain Prediction). Overlap between the prediction result and the
previous position in the trajectory (history) is used to evaluate the quality of a prediction. If
the previous time stamp is marked as “D” (indicating it is from a matched pairing) or “GP”
(indicating it as a reasonably good prediction), there is a good chance that the trajectory
history is reliable. Hence, if the overlap is high (larger than Tp) between the prediction at the
current step and the previous history step, the prediction result will be used and the state
will be marked as “GP”. If the overlap is not good, the state will be marked as “BP” and
the prediction result will not be used. Instead the previous result in the tracking history will
be used. For cases of unmatched tracked objects with a history that is not marked “D” or
“GP”, the state will be marked at “UP” since there is no known reliable history that can be
used to verify the current prediction. Algorithm 3 summarizes the inspection of the tracking
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prediction quality.

Algorithm 3 Checking prediction quality for unmatched tracks

1: procedure Prediction Quality
2: for each Unmatched track do
3: if Previous time step is “D” or “GP” then
4: if Overlap of prediction with previous time step < Tp then
5: Use BB output from previous time step and mark as “BP”
6: else
7: Use prediction and mark as “GP”
8: else
9: Use prediction but mark as “UP”

At the end of the tracking process, trajectories with significant amount of “BP” and “UP” will
be removed eventually since these final trajectories are likely to contain incorrect prediction
that does not reflect the actual movement of the objects of interest.

For active track management, when a tracked object is unable to find a matching detection
object for Tn frames, the object is assumed to have left the scene. The track will therefore
be terminated along with its last Tn steps of tracking results removed since they are most
likely not valid.

5.4 Experiments

The proposed method was tested on the Urban tracker dataset [20] and compared with several
state-of-the-art methods. We also performed an ablation study on the data association cost
components. The dataset includes four videos: Rouen, Sherbrooke, St-Marc and Rene-
Levesque. We chose this dataset because it includes a large variety of object classes and
background subtraction is applicable.

The tracking performance is evaluated by using the CLEAR MOT metrics [113] that are
comprised of MOTA (Multiple Object Tracking Accuracy) and MOTP (Multiple Object
Tracking Precision). MOTA evaluates the tracking performance by taking into consideration
the number of objects that are mismatched, the false positives (FP) and false negatives (FN).
MOTP evaluates the quality of the localization of the matches by checking the similarity of
true positives (TP) with the corresponding targets in ground truths.

We also report the following information. Ground truth (GT) is the number of actual object
instants in the whole video. Misses are missing GT object instances in tracks. FP are spurious
object detections that are not in the ground truth. Mismatches are the number of tracks
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that suffer from object identity switches. The identification of correct tracks, misses and FP
are based on the overlap of bounding boxes from our tracking output with respect to the
ones of the ground truth. We used a threshold of 0.3 for the overlap in tracking performance
evaluation as proposed by citebeaupre2018improving. In our experiments, To = 0.05, Tm =
0.5, Tc = 0.5, Td = 0.5 and Tp = 0.01.

5.4.1 Ablation study

We start our evaluation of our method with an ablation study on the data association cost.
The individual effects of the cost components are compared in Table 5.1. Generally it is
observed that the spatial cost has the smallest number of mismatches and FP for all the
evaluated videos. Since the spatial cost is based on the proximity of BBs, it is an essential
component that describes the similarity of objects to determine across frames. In the results
for St-Marc and Rene-Levesque, it has the highest number of correct tracks compared to the
other association costs.

Colour cost gives slightly inferior tracking performance, having more FP and mismatches
with slightly fewer correct tracks compared to the spatial cost. This could be due to presence
of multiple objects that share similar colour properties and the fact that proximity is ignored.
In addition, since BBs contain a certain portion of background as well (depending how well
the object is enclosed in the BB), this might not be the best cost component. However, it
can disambiguate the association of nearby objects with different colours.

Lastly, the class label cost gives the lowest performing tracking results due to reasons similar
to the colour cost. There could be several objects that share the same class label in the same
frame. With only the class label information it is often insufficient to do the right pairings.
Also, some IMOT objects are fed into the tracker with dummy class labels since they are
not paired with MOD objects in the object fusion stage. Nevertheless, the performance with
this feature is better than expected thanks to the similarity of confidence values for the same
object between frames. Since, the confidence value is used in Equation 5.5, objects are both
discriminated by their class and the confidence value.

5.4.2 Comparison with state-of-the-art methods

The performance of the proposed method is compared with previous state-of-the-art work,
IMOT [35], Urban tracker [20], MKCF [34] and Ooi et al. (Chapter 4) that were evaluated
on the Urban tracker dataset. For the data association cost, the weights of spatial, colour
and label costs are 0.6, 0.3 and 0.1 respectively for α, β and γ. As shown in Table 5.2, the
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Table 5.1 Comparison of individual association cost components for the four videos of the
Urban tracker dataset. Boldface indicates best result.

Cost GT Correct Tracks Misses FP Mismatches MOTP MOTA
Rouen Distance

2627
2125 502 519 19 0.604 0.604

Colour 2126 501 560 28 0.603 0.586
Label 2128 499 804 143 0.604 0.450

Sherbrooke Distance
4429

3029 1400 400 1 0.582 0.593
Colour 3030 1399 401 6 0.582 0.592
Label 3006 1423 503 45 0.584 0.555

St-Marc Distance
8375

6068 2307 515 73 0.696 0.654
Colour 6041 2334 591 93 0.696 0.640
Label 5820 2555 1161 293 0.700 0.521

Rene-Levesque Distance
9418

2701 6717 530 0 0.740 0.231
Colour 2694 6724 538 15 0.741 0.227
Label 2596 6822 687 80 0.746 0.194

proposed method yields better tracking performance than Urban Tracker, MKCF and Ooi
et al. (Chapter 4). Overall, IMOT outperformed all evaluated methods, even though our
proposed method performs the best in terms of MOTA for the video St-Marc and is second
best in terms of MOTA on Sherbrooke. It is noted, however, that the proposed method gives
a low MOTA for Rene-Levesque. Fusion of objects in the proposed method is not working
well for this particular video as the objects in the scene are very small, and inevitably they
get incorrectly paired with MOD bounding boxes that are usually large and imprecise for
small objects. Consequently, this affects the overall MOT performance. In fact, Ooi et al.
(Chapter 4) used only detection inputs, which was not able to track any object in this video.
It was already demonstrated that the use of only MOD objects as inputs for the MOT does
not work well for this particularly challenging video. The good MOTP values obtained by Ooi
et al. (Chapter 4) show that MOD BBs although not very reliable can give object locations
that are sometimes more precise.

Table 5.2 Comparison of the proposed method performance with state-of-the-art approaches.
Boldface indicates best results, italic indicates second best.

Our method IMOT Urban Tracker MKCF Ooi et al.
MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA

Rouen 0.604 0.601 0.620 0.670 0.617 0.696 0.582 0.501 0.687 -0.188
Sherb. 0.582 0.595 0.590 0.690 0.576 0.404 0.553 0.317 0.749 0.027
St-Marc 0.696 0.654 0.682 0.653 0.691 0.638 0.652 0.463 0.723 -0.366
Rene-L. 0.741 0.230 0.705 0.613 0.582 0.565 0.531 0.334 NA NA
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5.4.3 Discussion

The integration of objects from IMOT and a MOD is proposed in order to better capture
the objects of interest during the tracking process. It was expected that the combined
inputs can complement each other, producing better inputs compared to the inputs produced
individually from the different approaches. For instance, with the presence of fragmented
objects from background subtraction that are difficult to group together, having a reference
BB from the MOD that encompasses the whole object could be a useful indicator to improve
the representation of the complete object. However, from the experiments, we have noticed
the tendency of the MOD to generate large BBs that often include areas that do not belong
to the object of interest. While in certain frames, it is helpful to have such BBs showing
objects that are partially occluded, there are many occasions that such BBs include several
objects of interest as one detection, especially for objects of small sizes such as pedestrians
in urban traffic scene.

This led to a difficulty of tracking them effectively as the input objects to the tracker are
already merged as one whole object instead of distinct objects. In addition, there are cases
where IMOT objects encompassed more than one object of interest that appeared on the
scene as well due its origin of background subtraction. As an effort to mitigate these effects,
we have imposed a stricter merging threshold to reduce the amount of incorrect fusion of
objects. To distinguish the case between combining BBs of fragmented parts into one whole
object, and the case of having multiple objects interacting in close proximity, we take into
consideration the colour of IMOT objects to make the merging decision.

The excessive inclusion of areas that are not relevant may impact the tracking process as
well. This is because the colour histogram will consider the background portion that was
included in the BB for object description in the association cost for matching across frames,
leading to possibly less accurate descriptions of the objects of interest. However, despite the
effort to differentiate the two cases, some missed objects are still missed in the final tracking
outputs because of the imperfect representation of some objects of interest that get fed into
the tracker. The missed objects could be the result of MOD objects that are not paired
with the available IMOT objects. Indeed, sometimes the MOD can detect object that IMOT
cannot.

5.5 Conclusion

In this paper, we presented a novel approach for fusing input objects from a multiclass object
detector and an improved object extraction approach based on background subtraction for
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multiple object tracking. We use the integrated set of objects into a proposed MOT frame-
work that associates objects across frames using spatial, colour and class label information to
form trajectories in challenging urban traffic scenes. The prediction quality of unmatched ob-
jects in the MOT paradigm is evaluated to further improve the final tracking results. Results
show that our method is competitive, but that it is very challenging to combine detections
from multiple sources. First, they may not detect the same objects, and secondly, even if the
same objects are detected, objects are not bounded in the same way. Our ablation study show
that using class labels and their confidence can contribute positively to the data association
cost function.
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Abstract

In this paper, we propose a multiple object tracker, called MF-Tracker, that integrates multiple
classical features (spatial distances and colours) and modern features (detection labels and re-
identification features) in its tracking framework. Since our tracker can work with detections
coming either from unsupervised and supervised object detectors, we also investigated the
impact of supervised and unsupervised detection inputs in our method and for tracking road
users in general. We also compared our results with existing methods that were applied on
the UA-Detrac and the UrbanTracker datasets. Results show that our proposed method is
performing very well in both datasets with different inputs (MOTA ranging from 0.3491 to
0.5805 for unsupervised inputs on the UrbanTracker dataset and an average MOTA of 0.7638
for supervised inputs on the UA Detrac dataset) under different circumstances. A well-trained
supervised object detector can give better results in challenging scenarios. However, in simpler
scenarios, if good training data is not available, unsupervised method can perform well and
can be a good alternative.

6.1 Introduction

Multiple object tracking (MOT) in the context of traffic scenes essentially means following
the target objects (road users) in the scene to obtain an accurate representation of their
trajectories across frames, usually as feedback information to eventually improve traffic man-
agement systems or to better plan the layout of the roads. To follow an object, we must see it
first; to track a road user in a scene, the importance of getting correct detection inputs for the
tracking paradigm must not be overlooked. Compared to single object tracking, MOT has
to keep track of the presence of more than one target object while dealing with the possible
occlusions and mismatches of objects as a result of interactions of the moving objects with
the background and other objects, making it a challenging problem that is still actively re-
searched. In the case of traffic scenes, the MOT method must also deal with various lighting
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and weather conditions (See Figure 6.1). There are also multiple classes of objects.

Generally, there are two types of object detection methods to be used for tracking: supervised
and unsupervised. The former is the more modern approach using labeled data to train
models that can detect the target objects in a particular domain [79, 114]. This approach
usually delineates an object with a bounding box, and also attributes a class label to each
detected object. The latter typically corresponds to the classical approach of foreground
extraction and outputs objects that are not part of the background in the frame [115, 116].
This method does not need supervised training as it segments the scene in two classes based
on a model of the background. It is designed for cameras that are not moving and provides
an object segmentation mask, but no labels.

In this paper, we address the MOT problem for traffic scenes by proposing a new tracker that
integrates classical features (spatial distances and colours) and modern features (detection
labels and re-identification features), as well as object prediction in its tracking framework.
Our tracker can be applied to either supervised and unsupervised object detections. There-
fore, while designing our method we raised the question: which type of detection should be
used? To answer this question, we investigated formally the impact of the choice of the type
of detections in the design of the tracker.

The contributions of this paper are: 1) a new MOT tracker that combines various features
and that can capitalize on both unsupervised and supervised object detections and 2) a
formal analysis of the performance of unsupervised and supervised object detectors in road
tracking scenarios and their impact on MOT.

6.2 Related Works

The study of MOT on traffic scenes has undergone many changes and evolution over the
years. Conventionally, before the advent of deep learning in computer vision, the extraction
of target objects in the application of MOT were generic and unsupervised, as in [20,34,117].
In [34], background subtraction detections were combined with kernelized correlation filters
(KCF) for solving the MOT problem in urban traffic scenes. KCF is used as an appearance
model as well as for predicting the object position in the next frame. Similarly, [20] used
background subtraction to extract potential unknown road users for their proposed finite
state machine to handle the different target objects. Keypoints are used as an appearance
model. Other works, like the one of [32], instead used optical flow information to detect and
track road users.

Recently, most works on MOT use detections from supervised learning methods that output
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(a) (b) (c)

Figure 6.1 Examples of selected frames from videos in the UA-Detrac dataset [3] used for
evaluation in the experiments.

bounding boxes around learned object classes. The use of a deep learning-based detector
as the only source of input for multiple object tracking involving several different types of
road users was presented in Ooi et al. (Chapter 4), but with disappointing results. Ooi et
al. (Chapter 5) then further improved the method on the same dataset (UrbanTracker [20])
by applying classical unsupervised object detection outputs coupled with modern supervised
learning-based detector outputs, achieving some progress with the use of detector labels as
part of the feature description as well.

Meanwhile, the reported results on the UA-Detrac dataset [3] on its official website are
based on supervised object detectors. UA-Detrac does not consider bikes, motorcycles and
pedestrians. At the time of conducting our experiments, the reported top trackers on the
dataset are Evolving Boxes (EB)+Kalman+IOUT (extension of [52]), EB+IOUT [52] and
RCNN+IOUT [52]. These three methods are rather similar, essentially working by the
overlap of the intersection over union (IOU) of the bounding boxes that represent the objects
in each frame, with the assumptions that the high frame rate of the videos does not leave
“gaps” between the detections [52]. The Kalman filter used in the EB+Kalman+IOUT
approach is meant to allow skipping frames via predictions to improve processing speed.

Hence, in this study, we are interested in evaluating and understanding the effects of un-
supervised and supervised detections for MOT in varying traffic scenarios under different
environmental conditions as provided by these two datasets, UA-Detrac and UrbanTracker.
We therefore devised a novel tracker that can work with both kinds of inputs.

6.3 Method

We proposed a novel tracker (MF-Tracker) that combines classical features as well as deep
learning features for the matching of objects across frames. We are also interested in inves-
tigating the effects of supervised and unsupervised detections on MOT performance. Our
tracker was thus designed to work with both types of detections.
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Our multiple object tracker consists of several components: (i) Object detection, (ii) Feature
generation from objects and (iii) Data association to produce the final tracking outputs that
describe the trajectory of each target object across frames, as shown in Figure 6.2.

6.3.1 Inputs for the Tracker

Since we intend to compare the performances of different input objects for tracking, we used
a state-of-the-art background subtraction method (IMOT [35] with PAWCS (Pixel-based
Adaptive Word Consensus Segmenter) [116]) as unsupervised input source and the deep
learning-based detector (RetinaNet [79]) as supervised input source. Both approaches give
bounding boxes of target objects for each frame.

The next step for MF-Tracker is to extract the information contained within the bounding
boxes for the subsequent tracking module.

6.3.2 Classical Features and Modern Features

The proposed method integrates both classical features and modern features to generate
overall similarity scores to compare the objects across frames.

The similarity costs from classical features are:

• the spatial cost Cd: based on the spatial distances of the four coordinates of the bound-
ing boxes, it is defined as:

Cd = 1−max(0, Td − SD
Td

) (6.1)

SD = 1
4(|xD,min − xT,min|+ |yD,min − yT,min|+

|xD,max − xT,max|+ |yD,max − yT,max|), (6.2)

where SD is the mean bounding box spatial distance and xmin, ymin, xmax and ymax de-
note the minimum and maximum coordinates of an object bounding box. T represents
an object that is currently tracked while D represents a detected object in a frame. SD
denotes the mean spatial distance of the x coordinates and y coordinates of all the four
corners of the bounding boxes of the compared objects. A fixed parameter Td is used
to normalize Cd and to bound the maximal distance between bounding boxes.
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Figure 6.2 Overview of our proposed tracker (MF-Tracker). Detections from supervised or
unsupervised approaches are fed into the Feature Extraction module for further processing
in Data Association to produce the final trajectory outputs.

• the color cost Cc: it is the Bhattacharyya distances of the color histograms of the
bounding boxes. It is defined as:

Cc =
√√√√1− 1√

HD
i H

T
j N

2

∑
N

√
HD

i H
T
j , (6.3)

where HD
i denotes the color histogram of a detection i, HT

j denotes the color histogram
of a currently tracked object j and N is the total number of histogram bins (256 is
used in this work). HD

m and HT
m are the histogram bin means of the detected object

and currently tracked object, given by Equation 6.4 and Equation 6.5 respectively.

HD
m = 1

N

∑
HD

m (6.4)

HT
m = 1

N

∑
HT

m (6.5)

Meanwhile, the similarity costs from modern features are:

• the label cost Cl: the label information from the detector inputs are used as a similarity
cost. It is defined as:

Cl =

1− Wi+Wj

2 if Li = Lj

1 if Li 6= Lj,
(6.6)

where Li denotes the class label of object i and Wi its confidence value (between 0
and 1). Using the confidence value from the object class label, and not just the class
label for the cost is a beneficial strategy because confidence values tend to be similar
in consecutive frames for a given object.
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• the re-identification (REID) cost Cr: the deep-learned REID features of OSNet [118] are
also used for object description, where the REID cost is computed with the Euclidean
distance as

Cr = 1−
√∑

n

(ri
n − r

j
n)2 (6.7)

where ri
n and rj

n denote respectively the nth REID feature value of object i and j, and
n is the number of REID features. We used OSNet pre-trained on Multi-Scene Multi-
Time person ReID dataset (MSMT17) [119]. The features were not specifically tuned
for our application.

All these features are applied and combined to give a final similarity score given by

Cfinal = αCd + βCc + γCl + λCr, (6.8)

that ranges from 0 to 1, and where α, β, γ, λ denotes the weights for the corresponding cost.

This procedure is performed in the extracted bounding boxes of detections from both super-
vised and unsupervised sources. In the experiment, for the case of unsupervised detections,
due to lack of label information from the unsupervised method itself, detections from the su-
pervised detector are matched with the ones from the unsupervised approach, thus assigning
the label accordingly to the bounding boxes given by the unsupervised detector. Alterna-
tively, an object classifier could be applied. Input detection boxes from the unsupervised
approach are given null labels if there is no overlapping boxes from the supervised approach.

6.3.3 Data Association

Based on the similarity score computed from the features, the Hungarian algorithm is used for
matching the detected objects (detection list) from the supervised or unsupervised approaches
in each frame to the tracked objects (tracked list) accumulated from the previous frames.

Corresponding objects from the two lists (detection list and tracked list) are marked as
matched detection and the information for the objects is updated accordingly. Objects from
the detection list that are not successfully matched with any object in the tracked list are
initialized as new objects and taken in as part of the tracked list for the subsequent frame.
Unmatched objects from the tracked list could either be objects that are occluded or objects
that already left the scenes, or invalid objects that are incorrectly detected. A Kalman
filter is used to make prediction in the subsequent frames, accounting for occlusion cases, so
that occluded objects in the tracked list proceed with possible trajectories when they were
momentarily not detected at certain frames.
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For each object trajectory, there is also an analysis on the position histories so as to remove
invalid objects that are not relevant or to terminate the trajectory when the objects were
confirmed to have left the scene.

6.4 Experiments

The UA-Detrac [3] and UrbanTracker [20] datasets were used for the evaluation in this
study because they include four challenging real-world traffic videos with 4 to 20 targets in
the same frame simultaneously under different environmental conditions with varying types
of annotated road users. The videos contain 600 to 1000 frames respectively. Evaluation
of performances for the two datasets is performed using the standardized CLEAR MOT
metrics [91]. Because unsupervised detections are less precise in their localization and extent
(see Figure 6.3), an intersection over union of 0.3 is used for computing the evaluation metrics
as in previous work [35].

6.4.1 Experimental setup for the UA-Detrac dataset

Comparing supervised and unsupervised detections is not trivial because datasets are de-
signed with one or the other in mind. UA-Detrac does not include annotations for pedes-
trians, bikes and motorcycles. Due to the nature of unsupervised methods in producing the
input objects for the tracker, it is observed that the presence of these unannotated road users
in the frames will severely affect the quality of inputs for tracking and perhaps good tra-
jectories without corresponding annotations will be produced, but penalized in the MOTA.
Hence, in order to allow for fair comparisons of performance for the two sources of inputs in
the tracking phase, we have chosen 22 videos from the training set for this evaluation where
there are no (or very few) pedestrians, bikes and motorcycles. The videos are recorded at 25
fps (frame per seconds) with resolution of 960x540 pixels. The chosen videos include differ-
ent angles of observations with varying illumination and weather conditions. Comparison of
existing methods on the dataset is done by running the trackers on these videos individually
to obtain their MOTA and MOTP results.

For an unsupervised method, to get the detections, the background subtraction method
typically observes the video for some time to learn the background. In UA-Detrac, objects
have to be detected and tracked from the first frame of the video. Therefore, to simulate the
normal condition in which an unsupervised method would be applied, for each selected video,
k frames are selected randomly over the whole video for learning the background. That way,
foreground objects can then be detected from frame 1 in the tracking evaluation. Hence
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Figure 6.3 Examples of extracted bounding boxes from supervised and unsupervised detec-
tions of road users in evaluated sequence.

practically, for the unsupervised approach to work on this dataset, it has to “see” certain
portion of the frames of the video before doing the actual foreground detection. Hence to
allow fair comparison with the supervised methods, we are conducting experiment on videos
of the training set, where the detector has “seen” the data as well.

In practical applications where the evaluation is performed on new unseen data, it is expected
that the tracking performance will be lower for both type of detectors because of some
deterioration in quality of the detections obtained.

For the supervised detections as used in our method, RetinaNet with VGG-16 as backbone
is trained on the training set of UA-Detrac. The detected objects with confidence lower than
0.4 are filtered out before tracking. As for unsupervised detections, only bounding boxes
with areas that are greater than 2000 pixels are allowed as input to the tracker. These steps
are to ensure that only input objects that are valid in terms of size and confidence will be
used for our MOT evaluation. Indeed, presence of spurious noise and incorrect detections
can have a detrimental effect on the overall tracking performances. The supervised and
unsupervised detections used in our experiments with UA-Detrac can be downloaded at this
link (https://github.com/HuiLee-Ooi/MF-Tracker).

Besides comparing results of our proposed tracker with the different detection sources, track-
ing performances of existing trackers, under similar experimental settings with supervised
and unsupervised detections, are presented as well in Table 6.1.

https://github.com/HuiLee-Ooi/MF-Tracker
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Table 6.1 Comparison of MOTA and MOTP performances of trackers with supervised and unsupervised detections on selected
videos of UA-Detrac. For tracker names, the part following “+” indicates the method used to obtain detections. Boldface
indicates best result, Underline indicates second best result and Italicized green indicates third best result.

Video Seq.
Unsupervised detections Supervised detections

MKCF + MF-Tracker+ MF-Tracker +
MKCF + ViBe IMOT + ViBe PAWCS IMOT-PAWCS IoU + EB IoU + RCNN RetinaNet
MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP

MVI_39801 -1.1280 0.5624 -1.1493 0.5301 0.1309 0.5399 0.1970 0.5859 0.6085 0.8146 0.6773 0.7485 0.8351 0.8536
MVI_39861 -2.3416 0.5928 -2.0680 0.5319 -0.7905 0.5392 -0.0244 0.6201 0.7529 0.8423 0.5502 0.7312 0.7824 0.8546
MVI_40191 -1.1280 0.5624 -0.6120 0.6227 0.1679 0.6001 0.3050 0.7227 0.7201 0.8979 0.5156 0.8337 0.8549 0.9123
MVI_40192 -1.6718 0.5357 -1.0181 0.5948 0.3896 0.6055 0.3615 0.6915 0.5273 0.8807 0.4574 0.8145 0.7999 0.8918
MVI_40201 -2.4787 0.5489 -0.7528 0.5861 0.4245 0.6182 0.3321 0.6687 0.4643 0.8897 0.6324 0.8168 0.8009 0.8873
MVI_40204 -0.9831 0.5456 -0.7504 0.5700 0.2506 0.6050 0.2368 0.6651 0.7799 0.8645 0.6676 0.7647 0.5312 0.8715
MVI_40211 -5.1159 0.6144 -3.0001 0.5892 0.1305 0.6642 0.3414 0.6514 0.8491 0.9011 0.6354 0.7703 0.7019 0.9017
MVI_40212 -3.3782 0.6059 -1.9731 0.5858 0.0832 0.6576 0.2650 0.6438 0.8446 0.8952 0.6485 0.7731 0.7452 0.8841
MVI_40213 -3.1261 0.5969 -1.7845 0.5928 0.2929 0.6594 0.3957 0.6430 0.8458 0.9023 0.5389 0.7699 0.7028 0.8920
MVI_40241 -0.5776 0.5802 -0.3539 0.6214 0.3978 0.6246 0.4493 0.6880 0.3936 0.8998 0.6279 0.7821 0.7535 0.9116
MVI_40243 -0.0120 0.5995 -0.0934 0.6424 0.3950 0.6177 0.4828 0.6862 0.2845 0.9009 0.5216 0.7860 0.7695 0.9116
MVI_40244 0.1491 0.5771 0.0872 0.6458 0.4985 0.6091 0.5448 0.6770 0.1784 0.9044 0.5818 0.7843 0.7316 0.9139
MVI_40752 -0.5572 0.5888 -0.3374 0.6301 -0.0946 0.5952 0.2330 0.6586 0.6464 0.8799 0.5782 0.7521 0.7607 0.8788
MVI_40871 -0.4175 0.4671 -0.5729 0.4176 -0.1294 0.5151 0.0418 0.5522 0.1642 0.8861 0.4538 0.8061 0.8208 0.9208
MVI_40962 -0.4033 0.5940 0.0078 0.6796 -0.2181 0.5943 0.3114 0.7298 0.6969 0.9140 0.8478 0.8488 0.8696 0.9240
MVI_40963 -0.3398 0.5442 -0.0243 0.6428 -0.1518 0.5237 0.2407 0.6730 0.7308 0.8637 0.7056 0.7699 0.5945 0.8441
MVI_40981 -0.6972 0.5346 -0.4488 0.5951 -2.0140 0.4758 0.0065 0.6000 0.7529 0.8915 0.8122 0.7932 0.8964 0.9168
MVI_41063 0.1081 0.6198 0.1116 0.6271 0.4788 0.6399 0.3598 0.6507 0.7666 0.8738 0.7283 0.7868 0.7939 0.8870
MVI_41073 -1.1475 0.6197 -0.6290 0.6440 -0.4349 0.6355 0.2526 0.6820 0.8098 0.8889 0.7954 0.7699 0.7320 0.8732
MVI_63552 -3.2291 0.5804 -2.2304 0.5329 -0.1617 0.6421 0.1696 0.6249 0.6236 0.8334 0.5364 0.7487 0.7518 0.8549
MVI_63553 -3.0276 0.5699 -1.5817 0.5530 -0.1176 0.6256 0.1720 0.6161 0.7878 0.8455 0.5474 0.7433 0.8032 0.8499
MVI_63554 -3.0283 0.5657 -1.9908 0.5631 0.0836 0.6122 0.2065 0.6278 0.7213 0.8739 0.5668 0.7698 0.7707 0.8660

average -1.5696 0.5730 -0.9620 0.5908 -0.0177 0.6000 0.2673 0.6527 0.6341 0.8793 0.6194 0.7802 0.7638 0.8864
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At the time of writing, the current reported three best trackers in the dataset official website
are based on [52] with detection results from [114] and [120]. However, since we are not
able to run the tracker version with the Kalman filter on the individual videos presented in
this study (the public code does not work), only results of EB+IOU and RCNN+IOU are
reported (as IoU + EB and IoU + RCNN in the table).

6.4.2 Experimental setup for the UrbanTracker dataset

In this experiment, all four videos in the UrbanTracker dataset are used to evaluate and
compare with existing methods.

The optimal filter for the size of detections varies depending on video due to the inherently
different scenarios. For a fair comparison, we are using the same parameter settings as
presented by [20]. Meanwhile, due to the limited amount of data in the dataset, supervised
detection inputs are results of RetinaNet detection with VGG-16 backbone trained on the UA-
Detrac training set. The confidence threshold for filtering out the input bounding boxes from
supervised sources is set at 0.4 for all videos. For unsupervised detections, extra frames are
available before the annotated video segments. They are thus used to learn the background
model.

The MOT performances for our proposed MF-Tracker (with supervised and unsupervised
detections) compared to existing methods are presented in Table 6.2.

Table 6.2 Comparison of MOTA and MOTP performances of trackers on the UrbanTracker
dataset. For tracker names, the part following “+” indicates the method used to obtain the
detections. Boldface indicates the best result, Underline indicates the second best result and
Italicized green indicates the third best result. * indicates that the reported results are taken
from original published works without re-running the methods. RL indicates Rene-Levesque
and Sher. indicates Sherbrooke

Video Seq. Unsupervised detections Supervised detections
MF-Tracker + UrbanTracker + MKCF + MF-Tracker + Ooi et al. (Chapter 4)
IMOT-PAWCS IMOT * [35] ViBe * [34] RetinaNet + RFCN [92]
MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP MOTA MOTP

Rouen 0.5805 0.6035 0.670 0.620 0.501 0.582 0.133 0.885 -0.188 0.687
Sher. 0.609 0.5771 0.690 0.590 0.317 0.553 0.3771 0.915 0.027 0.7490

St-Marc 0.643 0.6849 0.653 0.682 0.463 0.652 0.1124 0.951 -0.366 0.723
RL 0.3491 0.712 0.613 0.705 0.334 0.531 0.273 0.901 NA NA
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6.5 Results

For the UA-Detrac dataset, generally, the trackers with supervised detections give better
tracking performances than the ones with unsupervised detections, as shown in Table 6.1.

MF-Tracker outperformed all the compared methods when coupled with supervised detec-
tions.

Supervised detections on the UA-Detrac dataset work very well, where MF-Tracker + Reti-
naNet achieved a mean MOTA of 0.7638 and a mean MOTP of 0.8884, whereas unsupervised
detections are not as good with MF-Tracker + IMOT-PAWCS only achieving mean MOTA
of 0.2673 and mean MOTP of 0.6527, despite the use of a state-of-the-art background sub-
traction method.

Despite the trend of supervised detectors overwhelmingly giving better performances than un-
supervised detectors, it is interesting to note that for some videos (MVI_40241, MVI_40243
and MVI_40244), our tracker with unsupervised detections ranked in third place, being quite
competitive with the second ranked method (IoU + RCNN) that is based on supervised de-
tections. These three videos are observed to have fast vehicles moving, causing motion blur.
It is also observed that the use of state-of-the-art background subtraction (PAWCS [116])
with MKCF (Multiple Kernelized Correlation Filters) improves the performance of the orig-
inal MKCF that uses ViBe background subtraction. Similarly, the use of PAWCS [116] with
IMOT with our tracker has improved the tracking performance compared to the original im-
plementation of the IMOT approach based on ViBe [115]. IMOT post-process results from
background subtraction by using optical flow and edges to solve object merging.

On the contrary, the results on the UrbanTracker dataset are showing a different trend. Ta-
ble 6.2 shows that trackers with unsupervised detections give better performances in terms
of multiple object tracking accuracy (MOTA), especially UrbanTracker + IMOT [35]. Our
proposed tracker with unsupervised detections (IMOT boxes from PAWCS background sub-
traction) ranked second in the comparison. However, it must be noted that the results
reported in both [35] and [34] are using parameters that are specifically tuned to each video
in the dataset. In contrast, aside from the filter for input size in the tracker that varies
according to video (which is a useful step given the disparity of target input size among the
videos and because those filter sizes were used by the competing methods), the proposed
MF-Tracker is applied with identical parameter settings for all the evaluated videos in the
dataset. Still, MF-Tracker with unsupervised detections obtains competitive results with
respect to [34, 35] for Rouen, Sherbrooke and St-Marc, although tracking performance on
Rene-Levesque is significantly worse.
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Table 6.3 Comparison of tracking results on videos from UrbanTracker dataset based on the
different individual features

Features Correct Tracks Misses FP Mismatches MOTP MOTA
distance 19358 5491 5182 89 0.677 0.567
color 19292 5557 5371 141 0.677 0.555
label 18968 5881 5193 271 0.679 0.543
REID 19090 5759 6761 654 0.678 0.470

Effects of the four different feature cost on our proposed tracker were studied individually
on the UrbanTraccker dataset with supervised inputs in Table 6.3, where number of correct
tracks, misses, false positives (FP) and mismatches of the four videos are accumulated. It is
observed that the compared features gives fairly similar MOTP (0.68) and MOTA ranges from
0.47 to 0.57. Spatial distance appears to be the best performing feature whereas REID is the
worst performing feature. Therefore we used the following weights α = 0.7, β = 0.1, γ = 0.1
and λ = 0.1 in the experiments.

6.6 Discussion

The quick impression from the presented results is that supervised methods give better
detections for the UA-Detrac dataset and conversely, unsupervised detections work better on
the UrbanTracker dataset.

For UA-Detrac, while the use of state-of-the-art background subtraction might help improv-
ing the tracking results (comparing original MKCF with ViBe and MKCF with PAWCS), it is
obvious that the methods with supervised detections are the clear winners. While one could
argue that good results are expected since the videos are part of the training set, similar
conditions can be said on the unsupervised methods as well since each video are “seen” to
build the background model before producing foreground outputs (detections) for tracking
purposes. However, despite a similar amount of learning on the data itself, methods with
unsupervised detections with fixed parameter settings still yield poor results overall.

Unsupervised object detection methods struggle with high density traffic were all objects
become merged together. Supervised object detection methods handle these cases better
because each road user is individually detected. Also, for unsupervised detection methods,
in night conditions, car headlights generate foreground regions that are then tracked as ghost
objects. They are ignored by supervised detection methods.

In any case, our proposed tracker with unsupervised detections (MF-Tracker + IMOT-
PAWCS) is the best performing method among the methods with such detections, and it
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managed to rank third on three of the videos in terms of MOTA, effectively outperforming a
method with supervised detections (IoU + EB). These videos are revealed to be containing
high speed vehicles that appear slightly blurry in the frame, possibly causing the supervised
detector to produce less accurate detections for the tracking framework. On the other hand,
the camera that is statically positioned ensure that the backgrounds of the videos are prop-
erly learned without a lot of noise by the unsupervised detector, thereby producing detections
of satisfactory quality to proceed with tracking. It must be noted that while the videos in
the UA-Detrac dataset are taken from fixed camera setups, some inevitable environmental
conditions such as windy weather can affect the quality of foreground given by unsupervised
detectors as the camera is slightly moving and vibrating. In these cases, results show that
newer methods (e.g. PAWCS) can better handle this issue than older methods (e.g. ViBe),
where street markings and highways dividers are detected as objects.

As we delve deeper in interpreting the results, it is observed that the supervised detectors do
not perform as well on the UrbanTracker dataset as on the UA-Detrac dataset because the
datasets contain inherently very different scenarios. The UA-Detrac dataset contains a large
number of videos in similar locations and angles with subtle differences, such as illumination
at different time of day. In contrast, the four videos in the UrbanTracker dataset are captured
at entirely different locations and the different heights of installation of the cameras cause
the captured objects in the frames to be highly varied in sizes and scales. UrbanTracker also
contains a larger variety of viewpoints. The work of Chapter 4 on UrbanTracker dataset
has previously shown that a supervised detector performed poorly on the dataset, due to
detector that produces too many false positive objects for tracking. Both MF-Tracker +
RetinaNet and the tracker presented in Chapter 4 are not trained on UrbanTracker itself due
to the lack of available training videos. It is plausible that better results could be achieved
by supervised detectors with more relevant training data, which is unfortunately lacking for
proper training.

The best performances on the UrbanTracker dataset are from UrbanTracker + IMOT [35],
while our proposed tracker with unsupervised detections ranked second in terms of MOTA
for all the videos. However, aside from the size filter for the unsupervised detections to be
fed into the tracker, our proposed tracker retained all the same parameters and settings for
all the videos. This is not the case for the tracker parameters in the works of [35] and [34]
that have been tuned to each of the specific videos in the dataset to achieve competitive
final results. It is important to note that this could be the main reason why UrbanTracker
+ IMOT generally fare better on the UrbanTracker dataset. In practical real applications,
however, it is desirable to have generic settings that is not overly tuned (overfit) to individual
video sequence.
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6.7 Conclusion

We presented a novel multi-feature tracker (MF-Tracker) that comprises classical and modern
features for the matching of objects across frames. In addition, we evaluated our tracker with
either unsupervised or supervised object detection approaches to investigate their differences
in MOT performance. Compared to the existing trackers evaluated on the datasets, our
proposed tracker achieved the best performances on the UA-Detrac dataset and is highly
competitive on the UrbanTracker dataset with fixed parameters for all videos during tracking.
Supervised inputs, when sufficiently trained with available data, produce good inputs that
lead to more accurate tracking of objects. Nevertheless, in simpler scenarios, if good training
data is not available, unsupervised method can perform well and can be a good alternative
that should not be neglected.
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CHAPTER 7 GENERAL DISCUSSION

This chapter discusses the thought process for the different attempts and experiments that
lead to the eventual ideas implemented in the published papers of Chapter 4, 5 and 6.
With these additional results and unpublished attempts at the initial stage of our study, the
observations and results gained throughout the research process have propelled the direction
of the proposed MOT approach into its current state.

At the earliest stage of the project, the work was mainly focused on obtaining targets of good
quality from the scene prior to proceeding to the eventual tracking task.

7.1 Object detection with superpixels

Some earlier experiments were conducted in applying superpixel processing on the frames to
obtain targets in the form of superpixels in order to better capture their characteristics and
possibly detect them more precisely in a frame. Various types of superpixel approaches were
experimented such as SLICs [121] (see Figure 7.1) and SEEDS [122] with varying parameters
to find the optimal settings for better results. This approach was envisioned to obtain a good
extraction of foreground superpixels that represent targets with respect to the background
superpixels for the MOT application. That is, to improve foreground detection, information
from the superpixels is used to better localize the boundary of the objects. For example, to
remove shadows as depicted in Figure 7.1b.

However, there are occasions when some superpixels contain some portions of the targets as
well as the background, which is irrelevant for our tracking purposes. The challenge was to
perform a clean extraction of superpixels for the road users, especially around the boundaries
of the targets from its surrounding environment.

Experiments were performed to evaluate the combination of background subtraction and su-
perpixel segmentation to identify foreground superpixels from the background superpixels.
Since background subtraction will give an indication on which pixels belong to the back-
ground or the foreground, we were interested in extracting superpixels that are identified
as foreground, tentatively setting them as the targets to be tracked by observing the pixels
contained by the superpixel. It was postulated that the superpixel entity will give a bet-
ter representation without the noisy individual pixels that might interfere with the tracking
process.

One of the initial ideas was to count the number of foreground pixels in a superpixel and apply
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(a) (b)

Figure 7.1 Background subtraction implemented on a video frame in (a) pixel-level and (b)
SLIC superpixel-level with compactness = 10 and size = 20.

some majority voting mechanism to label the whole superpixel as foreground or background
(see Figure 7.1). Although this approach could remove noisy foreground pixels, it was also
often extending the object area by adding additional boundary pixels. In addition, labeling
decisions were difficult in the case where there was almost as many background pixels as
foreground pixels inside a superpixel.

At the beginning of this thesis, another initial idea was to identify the different targets of
interest in the scene by observing the motion of the pixels contained by the superpixels.
Since there are some regions of the targets that are missed out by background subtraction,
we had the idea of integrating the motion information as well to better extract the foreground
superpixels. Optical flow is combined with the superpixels (as shown in Figure 7.2) in order
to find the motion information in terms of flow magnitude and direction for each superpixel.

One of the proposed attempts was to categorize a superpixel entity as foreground or back-
ground by evaluating its overall direction and magnitude of motion obtained from the optical
flow information on the clusters of pixels since theoretically, different types of road user (cars
vs pedestrians) move at different speed and direction. This would have allowed us to solve
occlusions between two objects. Experimentation with the binning of motion was performed
according to the flow angle with regards to the direction to quantify the superpixels into
different categories. The binning of motion direction was performed in both North-South
direction and West-East direction to ensure that the motion is adequately described (see
Figure 7.3). We wanted to use a limited number of bins. As shown in Figure 7.3a, the
motion similarity in the N-S direction can be quantified with four bins, but it is unable to
distinguish the motion pattern in E-W (motion direction from left to right and motion di-
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Figure 7.2 Magnitude of flow field with superpixel on video frame using Brox optical flow [4],
where darker color indicating larger flow magnitude.

rection from right to left are represented in the same bin). Hence the other binning process
(Figure 7.3b) is proposed to include such distinction. Note that the use of only the bin-
ning process at Figure 7.3b would have similar weakness, which is its insensitivity towards
a motion pattern in N-S direction. Then, neighboring superpixels belonging to the same
category (using the bin values) could be merged to form a single object, thereby addressing
the occlusion problem.
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Figure 7.3 Motion bin assignment in two-step binning process on the flow angle with empha-
size on (a) NS direction and (b) WE direction.

Nonetheless, the caveat is that two close angles might fall into different bins due to the
quantization. We found that the representation by superpixels is just as challenging as the
conventional pixel representation when it comes to merging superpixels that represent the
same target. It was hypothesized that the motion information within the superpixel would be
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able to give a more generalized and salient information while disregarding some of the noisy
pixels that were part of the superpixel region. The evaluated results from the experiments,
however, showed that it was not a feasible solution since the boundary superpixels (foreground
superpixels as well as background superpixels) were indistinguishable due to the similarity
in terms of optical flow information, as illustrated in Figure 7.4. We were not able to obtain
better boundaries that separate the foreground superpixels from the background superpixels.
The experiment has shown that the resulting extraction is highly noisy.

Figure 7.4 Example of attempted foreground superpixel extraction from the background
based on the optical flow information.

Since it was concluded that the representation in superpixels does not give a noticeable
advantage compared to the conventional pixel representation or the bounding boxes that
were commonly used by learned object detector, the idea of using superpixels as a part-based
model for our proposed tracking paradigm was eventually discarded.

7.2 Object detection with deep learning

Next, a deep learning-based method was employed to extract targets from the scene for
our tracking framework, given that there was a growing popularity with potentially good
detection results being reported in the recent literature. Compared to conventional object
extraction methods, such approaches require intensive training on several datasets as well as
fine-tuning on the target dataset to produce satisfactory detection results that are usable for
the tracking stage.

Our first paper (Chapter 4) used a multi-class object detector called Region-based Fully
Convolutional Network (RFCN) [92] that was pre-trained and fine-tuned for the application
of urban traffic scenes with the MIO-TCD dataset [103] in order to obtain targets with
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different categories. At the time of experimentation, the RFCN detector was chosen due to it
being a SOTA approach for object detection with very good reported results. Due to the size
limitation of the Urban Tracker dataset, there was a need to perform transfer learning from
another dataset. The RFCN could not be fine-tuned on the Urban Tracker dataset. MIO-
TCD that contains road users so that the model is capable of producing detection of targets
of satisfactory quality for our urban MOT application filled this need. However, a substantial
number of redundancies are observed in the resulting extraction of objects. A non-maximal
suppression (NMS) method [104, 105] was applied as an attempt to reduce the number of
bounding boxes that represent the same objects of interest in the video frames. It was able to
eliminate some redundancies to a certain degree but it was not always effective for all cases
and scenarios. It was also observed that the road users that are small in size and appeared
to be far in the scene are not easy to detect with this approach. In the evaluated Urban
Tracker dataset, one particular video (René-Lévesque) was having severe problems with the
extraction of useful inputs for our tracking paradigm because all the road users were small.
Without domain adaptation, RFCN was struggling on the Urban Tracker dataset, and results
were actually worse than with background subtraction.

At this point, with the detections from RFCN as inputs, our tracking approach was somewhat
rudimentary as association of objects is performed solely based on the Hungarian algorithm
with predictions from a Kalman filter, as inspired by previous works, such as [22]. The
Kalman filter was used for objects that are temporarily missing due to possible occlusions.
In addition to the standard features used for describing the objects like positional distance,
and differences of color histograms, the use of a class label distance was proposed, formulating
the relationship of the compared objects such that lower matching cost would be assigned if
they are of the same class label and with high detection confidence. Higher cost would be
given if the compared objects have different labels or having low confidence score for their
labels. It was demonstrated that the proposed label class feature is useful in boosting the
performance of tracker through the ablation studies.

It was observed that the quality of detection critically affects the tracking performance on the
different road users. On one hand, missing detections on the targets could lead to inaccurate
tracking. On the other hand, having the redundant objects creates more confusion during the
tracking process as well due to the false detections of targets. This problem was encountered
during the development of Chapter 4 and Chapter 5, where this issue is highlighted and
discussed in the articles as well.

Results from Chapter 4 have cemented the idea that the detection quality will greatly improve
or severely degrade the final outputs of the tracker. This spurred us to work harder on the
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effort on extracting foreground of high quality in our work.

7.3 Combining objects from deep learning and background subtraction

Our next attempt involved the exploration of different methods of foreground extraction to
eventually obtain the most optimal inputs available for the tracking process. This task was
later discovered to be more difficult than expected since simple merging of bounding boxes
is insufficient to give optimal results that lead to better tracking performance. Indeed, if
two detection sources give contradictory results, which one is right? This eventually led
to the idea of fusing the bounding boxes from a learned object detector and a background
subtraction-based approach to verify and remove the redundant bounding boxes given by the
multi-class detector. Using the same detector (RFCN) with the same pre-trained steps as
in Chapter 4, Chapter 5 follows the exact same approach to obtain supervised inputs in the
form of bounding boxes. The same settings are kept to evaluate the improvements that the
fusing of inputs could attain.

The background subtraction-based method, known as Improved Multiple Object Tracking
(IMOT) converts blobs of foreground into compact bounding boxes with the consideration of
object edges and optical flow. With a filtering step applied to IMOT objects to allow only a
certain minimum size for their validity consideration, it is assumed that the inputs provided
by the IMOT are more reliable than the ones from the multi-class object detector (MOD)
that contains a lot of redundancies. IOU between the IMOT objects and MOD objects are
used to determine the validity of an object as an input to be fed into the tracking procedure.
A strategy was devised to verify the existence of targets from both sources since the two
may complement each other, despite their own sets of individual disadvantages. Since IMOT
objects are usually smaller and more compact, it is likely that some of them are fragmented
parts of targets. Aside from the comparison between IMOT and MOD objects, comparison
of IMOT objects that are in close proximity was also performed and their similarity was
evaluated. Color histogram information was taken into consideration when attempting to
merge multiple fragmented IMOT objects into one object, resulting in a cleaner set of objects
that comes with label information given by the multi-class detector.

Nonetheless, it was observed that the bounding boxes fromMOD are still somewhat unreliable
as the generated objects have the tendency of containing areas that do not belong to the
targets and that are not sufficiently compact. On the other hand, it is useful in cases of
partial occlusion, which is highly common due to the presence of pedestrians in urban traffic
scenes.
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As with any other method of object extraction, the fusing strategy, however, is not perfect for
all cases. It is challenging to perform accurate tracking when objects are mistakenly merged
as a big object instead of being represented as the distinct objects that they actually are.
Occasionally, even the IMOT representation might already contain more than one object of
interest due to the nature of the background subtraction approach. A strict threshold was
imposed during the merging process to minimize the number of incorrect fusion of objects.
During the fusion process, in addition to the distances, the color information is integral in
differentiating between the case of combining fragmented parts into one object and the case of
having multiple distinct objects interacting in close proximity. Due to the prominent role of
color information in such circumstances, we noticed that the excessive inclusion of background
areas in the bounding boxes that are not compactly containing the objects of interest impairs
the tracking process in the end due to the irrelevant details from the background. Since the
proposed method is essentially filtering IMOT objects with MOD objects, it has in effect
disregarded the possible objects provided by the MOD that were missed out by the IMOT,
which could have been helpful. However, given the redundancies of bounding boxes from our
previous experiments, it was not a feasible choice to take that into consideration.

Throughout the tracking process, the Kalman filter produces a prediction from the accumu-
lated history for each object at each time step. Our tracking strategy was fortified by an
evaluation on the quality of the prediction to determine if it is indeed appropriate to the
circumstances. The predictions are inserted into final trajectories only as needed when the
quality of the prediction is sufficiently good or reliable based on the overlap criteria between
the prediction result and the previous position in the trajectory history. This allows the
flexibility of using the previous result in the history instead of the prediction if it is already
known to be unreliable. In the final set of trajectories, the ones with an excessively high
number of unreliable and bad predictions are disregarded so that only the trajectories with
good quality are outputted as our tracking results.

7.4 Supervised vs unsupervised detections

Finally, given the challenges faced in fusing objects of different sources in Chapter 5, we have
decided to take a step back and evaluate objectively the exact effects of using supervised and
unsupervised inputs in our tracking framework. Since it was observed that neither bounding
boxes that loosely contain the targets (with inclusion of parts of background or other targets)
nor overly excessive compact bounding boxes that only capture a part of the object of interest
are good enough to overlook their impacts on the tracking process, we experimented on a
different detector that gives potentially more accurate inputs for our tracker. In Chapter 6,
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a new SOTA object detector, RetinaNet [79] was employed as the source for supervised
inputs and it was tested on the UA-Detrac dataset as well. Unsupervised inputs are from
IMOT paired with PAWCS (Pixel-based Adaptive Word Consensus Segmenter) [116], a SOTA
background subtraction method. Hence, both the supervised and unsupervised inputs are in
the form of bounding boxes that enclosed the objects of interest. In addition to the existing
features that were re-used from the previous methods (spatial distance, color histogram and
object class label), ReID features were included as well to better describe the targets for
tracking. Comparison of the tracking performance was also done with other methods from
the literature on both datasets with both supervised and unsupervised inputs. From the
results, it was interpreted that the supervised inputs generally work very well for datasets
with large available training data, such as the UA-Detrac dataset. Certain videos in the
dataset worked well with unsupervised inputs too, albeit with slightly lower quantitative
results. However, datasets with limited size, such as the Urban Tracker dataset, require a
different strategy, seeing that it was not feasible to perform training on the data itself to
prevent overfitting, while also subjecting the supervised detector to sufficient variability. It
was noted that despite the small size of the dataset, the urban traffic scenarios are inherently
very different from one another to accommodate sufficient training. On the other hand, the
UA-Detrac dataset provides large scale scenes with similar locations with subtle changes that
can facilitate intensive training.

A supervised method like RetinaNet fares better in crowded traffic scenes due to its ability
to detect each target individually. An unsupervised method might observe the different road
users as a merged entity and thus has difficulty for effective tracking. Nonetheless, in cases
where there is an unexpected object that is not learnt prior to detection, an unsupervised
method would still be able to perform the extraction whereas a supervised method will not
be able to identify it at all.

In short, our proposed tracker has undergone various changes and modifications for improve-
ment over time and is adapted to work with different types of inputs, whether they are
originating purely from a supervised method, an unsupervised method or a fusion of the two.
We have found some evidence and verified with experiments that the choice of inputs for
MOT is not a one-size-fits-all solution, as the type of evaluated dataset determines the most
suitable approach to tackle the problem to achieve good tracking results in the end.
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CHAPTER 8 CONCLUSION

This chapter concludes the thesis with remarks and insights gained from the research con-
ducted and our experimentation.

8.1 Advancement of knowledge

In this project, we sought to propose a good tracking strategy that addressed the issues and
complications encountered in urban traffic scenes. Indeed, assessing the problem has revealed
many challenges that resulted from the frequent occurrence of occlusions and interactions
among targets in the scenes. To this end, we started to examine and tackle the problem
from the very start: the extraction of road users. Through the studies conducted during
this research, we have observed and concluded that the quality of the extraction of objects
critically determines the level of success in tracking them individually at later stages. Hence,
a significant part of the research effort is dedicated on assessing and investigating the manner
of obtaining the optimal inputs for tracking purposes.

First, we started by applying a supervised multi-class object detector to supply inputs for
our proposed MOT solution, at the same time capitalizing on class label information for the
tracking process. More precisely, in order to take into account the variability of object types in
the urban traffic scenes, we proposed the use of object class labels and their confidence levels
obtained from a deep learning-based object detector as part of the features that describe
the objects of interest. We have demonstrated this information to be useful and valuable
in improving the performance of the tracker on the evaluated datasets. While the class
label information does give satisfactory results in the tracking stage, the quality of bounding
boxes as representation of targets provided by the object detector was not up to par with
our expectation. Contributions in this part of our work are the incorporation of a modern
object detector as well as the use of object class label information in our proposed tracker.

Then, we investigated further more sophisticated manners of combining inputs from differ-
ent sources, while tweaking our tracker strategy as well for improvements to achieve better
tracking results for each of the target in the scene. We acknowledged that there are different
pros and cons from different manner of extracting of objects of interest, and we yearned
to achieve the best-of-both-world solution by complementing the different approaches. The
proposed fusion showed improvements to a certain degree, but there are still occasions where
it does not perform optimally. As for our tracking strategy, we continued to use the most
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popular data association method, the Hungarian algorithm for matching the objects across
frames due to its simplicity and effectiveness. In fact, the vast majority of the newest track-
ers are still using this proven approach. The prediction strategy that handles occlusion was
improved too, with the evaluation of the quality of prediction before its integration into the
final trajectory outputs. In short, this second part of our work contributed a fusion strategy
for the inputs of a tracker from various sources in addition to a prediction evaluation strategy
that improves tracking performance.

Last but not least, we conducted a thorough investigation that compares the effects of super-
vised and unsupervised inputs, where the experimental comparison involves our own tracker
as well as other existing methods on the same datasets. While at first glance, it seemed that
the results were contradicting on the two datasets, a deeper analysis further revealed the
reasons for such observations. UA-Detrac dataset is larger in size, offering a large number
of training frames in rather similar settings as the test frames with slight variations over
time. It is ideal for the use of supervised methods to give good tracking results based on the
learned inputs. Supervised inputs have an edge over unsupervised inputs in this case as it
is not easily affected by the occasional noise caused by the movements of the cameras and
environmental perturbations. On the contrary, the Urban Tracker dataset is much limited
in size with no training data, but contains scenes that highly varies from one video to an-
other. Our attempts at tracking using supervised detectors was not very successful. Instead,
unsupervised inputs for this dataset fared better in our tracking results. In addition, it is
important to note that a supervised detector would not be able to detect unexpected road
users that are not learned prior training. This allows unsupervised method to be able to
capture this occurrence, however rare it might be. Hence, it is concluded that there is no
perfect set of inputs that fits all datasets and the flexibility of using different detectors is
needed, whether it is supervised or unsupervised, depending on the nature of the data and re-
quirements. Automatic tracking without considering the type of data is not likely to achieve
its highest potential in its tracking performance. The last part of our work contributed a
comprehensive assessment of the impacts of supervised and unsupervised detection in the
context of MOT.

8.2 Limits and recommendations

In the implementation of our proposed MOT solution, the choice of feature weight assigned
for data association is obtained in heuristic manner and is dependent on threshold values.
In a large scale experiment involving a lot of datasets, it might not be feasible to manually
perform the empirical tuning of weights, and thus an automatic approach could be preferable.
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Besides, even for a single video, describing all of its objects efficiently might require different
sets of weights. Therefore, the proposed method could benefit from a more sophisticated way
of combining the features to match the objects of interest across frames. One possible idea for
this step is metric learning, where similarity of pairs of objects are trained and learnt before
assigning the weights for the feature cost used in the Hungarian algorithm. Background
pixels in bounding boxes also affects the quality of the object representation. As a result, it
is postulated that a segmented representation that enclose the targets closely might be a more
accurate representation of road users for tracking, as illustrated by our earlier attempts of
using superpixel representation. It is perhaps where the research direction could be heading
towards since we observed lately some recent works perform MOT from segmentation with
object masks.
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