45 research outputs found

    Data Augmentation for Spoken Language Understanding via Joint Variational Generation

    Full text link
    Data scarcity is one of the main obstacles of domain adaptation in spoken language understanding (SLU) due to the high cost of creating manually tagged SLU datasets. Recent works in neural text generative models, particularly latent variable models such as variational autoencoder (VAE), have shown promising results in regards to generating plausible and natural sentences. In this paper, we propose a novel generative architecture which leverages the generative power of latent variable models to jointly synthesize fully annotated utterances. Our experiments show that existing SLU models trained on the additional synthetic examples achieve performance gains. Our approach not only helps alleviate the data scarcity issue in the SLU task for many datasets but also indiscriminately improves language understanding performances for various SLU models, supported by extensive experiments and rigorous statistical testing.Comment: 8 pages, 3 figures, 4 tables, Accepted in AAAI201

    Equivariant Data Augmentation for Generalization in Offline Reinforcement Learning

    Full text link
    We present a novel approach to address the challenge of generalization in offline reinforcement learning (RL), where the agent learns from a fixed dataset without any additional interaction with the environment. Specifically, we aim to improve the agent's ability to generalize to out-of-distribution goals. To achieve this, we propose to learn a dynamics model and check if it is equivariant with respect to a fixed type of transformation, namely translations in the state space. We then use an entropy regularizer to increase the equivariant set and augment the dataset with the resulting transformed samples. Finally, we learn a new policy offline based on the augmented dataset, with an off-the-shelf offline RL algorithm. Our experimental results demonstrate that our approach can greatly improve the test performance of the policy on the considered environments

    On the Generalization Effects of Linear Transformations in Data Augmentation

    Full text link
    Data augmentation is a powerful technique to improve performance in applications such as image and text classification tasks. Yet, there is little rigorous understanding of why and how various augmentations work. In this work, we consider a family of linear transformations and study their effects on the ridge estimator in an over-parametrized linear regression setting. First, we show that transformations which preserve the labels of the data can improve estimation by enlarging the span of the training data. Second, we show that transformations which mix data can improve estimation by playing a regularization effect. Finally, we validate our theoretical insights on MNIST. Based on the insights, we propose an augmentation scheme that searches over the space of transformations by how uncertain the model is about the transformed data. We validate our proposed scheme on image and text datasets. For example, our method outperforms RandAugment by 1.24% on CIFAR-100 using Wide-ResNet-28-10. Furthermore, we achieve comparable accuracy to the SoTA Adversarial AutoAugment on CIFAR datasets.Comment: International Conference on Machine learning (ICML) 2020. Added experimental results on ImageNe

    Kernel-convoluted Deep Neural Networks with Data Augmentation

    Full text link
    The Mixup method (Zhang et al. 2018), which uses linearly interpolated data, has emerged as an effective data augmentation tool to improve generalization performance and the robustness to adversarial examples. The motivation is to curtail undesirable oscillations by its implicit model constraint to behave linearly at in-between observed data points and promote smoothness. In this work, we formally investigate this premise, propose a way to explicitly impose smoothness constraints, and extend it to incorporate with implicit model constraints. First, we derive a new function class composed of kernel-convoluted models (KCM) where the smoothness constraint is directly imposed by locally averaging the original functions with a kernel function. Second, we propose to incorporate the Mixup method into KCM to expand the domains of smoothness. In both cases of KCM and the KCM adapted with the Mixup, we provide risk analysis, respectively, under some conditions for kernels. We show that the upper bound of the excess risk is not slower than that of the original function class. The upper bound of the KCM with the Mixup remains dominated by that of the KCM if the perturbation of the Mixup vanishes faster than O(n−1/2)O(n^{-1/2}) where nn is a sample size. Using CIFAR-10 and CIFAR-100 datasets, our experiments demonstrate that the KCM with the Mixup outperforms the Mixup method in terms of generalization and robustness to adversarial examples

    Data Augmentation for Modeling Human Personality: The Dexter Machine

    Full text link
    Modeling human personality is important for several AI challenges, from the engineering of artificial psychotherapists to the design of persona bots. However, the field of computational personality analysis heavily relies on labeled data, which may be expensive, difficult or impossible to get. This problem is amplified when dealing with rare personality types or disorders (e.g., the anti-social psychopathic personality disorder). In this context, we developed a text-based data augmentation approach for human personality (PEDANT). PEDANT doesn't rely on the common type of labeled data but on the generative pre-trained model (GPT) combined with domain expertise. Testing the methodology on three different datasets, provides results that support the quality of the generated data
    corecore