3 research outputs found

    Recherche d'information et fouille de textes

    Get PDF
    National audienceIntroduction Comprendre un texte est un but que l'Intelligence Artificielle (IA) s'est fixé depuis ses débuts et les premiers travaux apportant des réponses ont vu le jour dans les années 70s. Depuis lors, le thème est toujours d'actualité, bien que les buts et méthodes qu'il recouvre aient considérablement évolués. Il est donc nécessaire de regarder de plus près ce qui se cache derrière cette dénomination générale de « compréhension de texte ». Les premiers travaux, qui ont eu lieu du milieu des années 70 jusqu'au milieu des années 80 [Charniak 1972; Dyer 1983; Schank et al. 1977], étudiaient des textes relatant de courtes histoires et comprendre signifiait mettre en évidence les tenants et aboutissants de l'histoire-les sujets traités, les événements décrits, les relations de causalité les reliant-ainsi que le rôle de chaque personnage, ses motivations et ses intentions. La compréhension était vue comme un processus d'inférence visant à expliciter tout l'implicite présent dans un texte en le retrouvant à partir des connaissances sémantiques et pragmatiques dont disposait la machine. Cela présupposait une modélisation préalable de ces connaissances. On rejoint ici les travaux effectués sur les différents formalismes de représentation des connaissances en IA, décrivant d'une part les sens associés aux mots de la langue (réseaux sémantiques vs logique, et notamment graphes conceptuels [Sowa 1984] et d'autre part les connaissances pragmatiques [Schank 1982]. Tous ces travaux ont montré leur limite dès lors qu'il s'agissait de modéliser manuellement ces connaissances pour tous les domaines, ou de les apprendre automatiquement. Le problème de la compréhension automatique en domaine ouvert restait donc entier. Puisque le problème ainsi posé est insoluble en l'état des connaissances, une approche alternative consiste à le redéfinir et à le décomposer en sous-tâches potentiellement plus faciles à résoudre. Ainsi la compréhension de texte peut être redéfinie selon différents points de vue sur le texte qui permettent de répondre à des besoins spécifiques. De même qu'un lecteur ne lit pas un texte de façon identique selon qu'il veut évaluer sa pertinence par rapport à un thème qui l'intéresse (tâche de type recherche documentaire), qu'il veut classer des documents, prendre connaissances des événements relatés ou rechercher une information précise, de même les processus automatiques seront multiples et s'intéresseront à des aspects différents du texte en fonction de la tâche visée. Suivant le type de connaissance cherché dans un document, le lecteur n'extraira du texte que l'information qui l'intéresse et s'appuiera pour cela sur les indices et sur les connaissances qui lui permettent de réaliser sa tâche de lecture, et donc de compréhension, sans avoir à tout assimiler. On peut alors parler de compréhension à niveaux variables, qui va permettre d'accéder à des niveaux de sens différents. Cette démarche est bien illustrée par les travaux en extraction d'information, évalués dans le cadre des conférences MUC [Grishman and Sundheim 1996], qui ont eu lieu de la fin des années 1980 jusqu'en 1998. L'extraction d'information consistait alors à modéliser un besoin d'information par un patron, décrit par un ensemble d'attributs typés, et à chercher à remplir ces attributs selon l'information contenue dans les textes. C'est ainsi que se sont notamment développées les recherches sur les « entités nommées » (à savoir le repérage de noms de personne, d'organisation, de lieu, de date, etc.) et sur les relations entre ces entités. C'est aussi dans cette optique que se sont développées les approches se situant au niveau du document, que ce soit pour la recherche d'information ou pour en déterminer la structur

    Finding answers to questions, in text collections or web, in open domain or specialty domains

    Get PDF
    International audienceThis chapter is dedicated to factual question answering, i.e. extracting precise and exact answers to question given in natural language from texts. A question in natural language gives more information than a bag of word query (i.e. a query made of a list of words), and provides clues for finding precise answers. We will first focus on the presentation of the underlying problems mainly due to the existence of linguistic variations between questions and their answerable pieces of texts for selecting relevant passages and extracting reliable answers. We will first present how to answer factual question in open domain. We will also present answering questions in specialty domain as it requires dealing with semi-structured knowledge and specialized terminologies, and can lead to different applications, as information management in corporations for example. Searching answers on the Web constitutes another application frame and introduces specificities linked to Web redundancy or collaborative usage. Besides, the Web is also multilingual, and a challenging problem consists in searching answers in target language documents other than the source language of the question. For all these topics, we present main approaches and the remaining problems

    Recognizing Textual Entailment Using Description Logic And Semantic Relatedness

    Get PDF
    Textual entailment (TE) is a relation that holds between two pieces of text where one reading the first piece can conclude that the second is most likely true. Accurate approaches for textual entailment can be beneficial to various natural language processing (NLP) applications such as: question answering, information extraction, summarization, and even machine translation. For this reason, research on textual entailment has attracted a significant amount of attention in recent years. A robust logical-based meaning representation of text is very hard to build, therefore the majority of textual entailment approaches rely on syntactic methods or shallow semantic alternatives. In addition, approaches that do use a logical-based meaning representation, require a large knowledge base of axioms and inference rules that are rarely available. The goal of this thesis is to design an efficient description logic based approach for recognizing textual entailment that uses semantic relatedness information as an alternative to large knowledge base of axioms and inference rules. In this thesis, we propose a description logic and semantic relatedness approach to textual entailment, where the type of semantic relatedness axioms employed in aligning the description logic representations are used as indicators of textual entailment. In our approach, the text and the hypothesis are first represented in description logic. The representations are enriched with additional semantic knowledge acquired by using the web as a corpus. The hypothesis is then merged into the text representation by learning semantic relatedness axioms on demand and a reasoner is then used to reason over the aligned representation. Finally, the types of axioms employed by the reasoner are used to learn if the text entails the hypothesis or not. To validate our approach we have implemented an RTE system named AORTE, and evaluated its performance on recognizing textual entailment using the fourth recognizing textual entailment challenge. Our approach achieved an accuracy of 68.8 on the two way task and 61.6 on the three way task which ranked the approach as 2nd when compared to the other participating runs in the same challenge. These results show that our description logical based approach can effectively be used to recognize textual entailment
    corecore