2,538 research outputs found

    Joint Quantization and Diffusion for Compressed Sensing Measurements of Natural Images

    Full text link
    Recent research advances have revealed the computational secrecy of the compressed sensing (CS) paradigm. Perfect secrecy can also be achieved by normalizing the CS measurement vector. However, these findings are established on real measurements while digital devices can only store measurements at a finite precision. Based on the distribution of measurements of natural images sensed by structurally random ensemble, a joint quantization and diffusion approach is proposed for these real-valued measurements. In this way, a nonlinear cryptographic diffusion is intrinsically imposed on the CS process and the overall security level is thus enhanced. Security analyses show that the proposed scheme is able to resist known-plaintext attack while the original CS scheme without quantization cannot. Experimental results demonstrate that the reconstruction quality of our scheme is comparable to that of the original one.Comment: 4 pages, 4 figure

    End-to-end security for video distribution

    Get PDF

    Algorithms and Architectures for Secure Embedded Multimedia Systems

    Get PDF
    Embedded multimedia systems provide real-time video support for applications in entertainment (mobile phones, internet video websites), defense (video-surveillance and tracking) and public-domain (tele-medicine, remote and distant learning, traffic monitoring and management). With the widespread deployment of such real-time embedded systems, there has been an increasing concern over the security and authentication of concerned multimedia data. While several (software) algorithms and hardware architectures have been proposed in the research literature to support multimedia security, these fail to address embedded applications whose performance specifications have tighter constraints on computational power and available hardware resources. The goals of this dissertation research are two fold: 1. To develop novel algorithms for joint video compression and encryption. The proposed algorithms reduce the computational requirements of multimedia encryption algorithms. We propose an approach that uses the compression parameters instead of compressed bitstream for video encryption. 2. Hardware acceleration of proposed algorithms over reconfigurable computing platforms such as FPGA and over VLSI circuits. We use signal processing knowledge to make the algorithms suitable for hardware optimizations and try to reduce the critical path of circuits using hardware-specific optimizations. The proposed algorithms ensures a considerable level of security for low-power embedded systems such as portable video players and surveillance cameras. These schemes have zero or little compression losses and preserve the desired properties of compressed bitstream in encrypted bitstream to ensure secure and scalable transmission of videos over heterogeneous networks. They also support indexing, search and retrieval in secure multimedia digital libraries. This property is crucial not only for police and armed forces to retrieve information about a suspect from a large video database of surveillance feeds, but extremely helpful for data centers (such as those used by youtube, aol and metacafe) in reducing the computation cost in search and retrieval of desired videos

    Secure Watermarking for Multimedia Content Protection: A Review of its Benefits and Open Issues

    Get PDF
    Distribution channels such as digital music downloads, video-on-demand, multimedia social networks, pose new challenges to the design of content protection measures aimed at preventing copyright violations. Digital watermarking has been proposed as a possible brick of such protection systems, providing a means to embed a unique code, as a fingerprint, into each copy of the distributed content. However, application of watermarking for multimedia content protection in realistic scenarios poses several security issues. Secure signal processing, by which name we indicate a set of techniques able to process sensitive signals that have been obfuscated either by encryption or by other privacy-preserving primitives, may offer valuable solutions to the aforementioned issues. More specifically, the adoption of efficient methods for watermark embedding or detection on data that have been secured in some way, which we name in short secure watermarking, provides an elegant way to solve the security concerns of fingerprinting applications. The aim of this contribution is to illustrate recent results regarding secure watermarking to the signal processing community, highlighting both benefits and still open issues. Some of the most interesting challenges in this area, as well as new research directions, will also be discussed
    • …
    corecore