202 research outputs found

    Partially-Distributed Resource Allocation in Small-Cell Networks

    Full text link
    We propose a four-stage hierarchical resource allocation scheme for the downlink of a large-scale small-cell network in the context of orthogonal frequency-division multiple access (OFDMA). Since interference limits the capabilities of such networks, resource allocation and interference management are crucial. However, obtaining the globally optimum resource allocation is exponentially complex and mathematically intractable. Here, we develop a partially decentralized algorithm to obtain an effective solution. The three major advantages of our work are: 1) as opposed to a fixed resource allocation, we consider load demand at each access point (AP) when allocating spectrum; 2) to prevent overloaded APs, our scheme is dynamic in the sense that as the users move from one AP to the other, so do the allocated resources, if necessary, and such considerations generally result in huge computational complexity, which brings us to the third advantage: 3) we tackle complexity by introducing a hierarchical scheme comprising four phases: user association, load estimation, interference management via graph coloring, and scheduling. We provide mathematical analysis for the first three steps modeling the user and AP locations as Poisson point processes. Finally, we provide results of numerical simulations to illustrate the efficacy of our scheme.Comment: Accepted on May 15, 2014 for publication in the IEEE Transactions on Wireless Communication

    Efficient radio resource management for future generation heterogeneous wireless networks

    Get PDF
    The heterogeneous deployment of small cells (e.g., femtocells) in the coverage area of the traditional macrocells is a cost-efficient solution to provide network capacity, indoor coverage and green communications towards sustainable environments in the future fifth generation (5G) wireless networks. However, the unplanned and ultra-dense deployment of femtocells with their uncoordinated operations will result in technical challenges such as severe interference, a significant increase in total energy consumption, unfairness in radio resource sharing and inadequate quality of service provisioning. Therefore, there is a need to develop efficient radio resource management algorithms that will address the above-mentioned technical challenges. The aim of this thesis is to develop and evaluate new efficient radio resource management algorithms that will be implemented in cognitive radio enabled femtocells to guarantee the economical sustainability of broadband wireless communications and users' quality of service in terms of throughput and fairness. Cognitive Radio (CR) technology with the Dynamic Spectrum Access (DSA) and stochastic process are the key technologies utilized in this research to increase the spectrum efficiency and energy efficiency at limited interference. This thesis essentially investigates three research issues relating to the efficient radio resource management: Firstly, a self-organizing radio resource management algorithm for radio resource allocation and interference management is proposed. The algorithm considers the effect of imperfect spectrum sensing in detecting the available transmission opportunities to maximize the throughput of femtocell users while keeping interference below pre-determined thresholds and ensuring fairness in radio resource sharing among users. Secondly, the effect of maximizing the energy efficiency and the spectrum efficiency individually on radio resource management is investigated. Then, an energy-efficient radio resource management algorithm and a spectrum-efficient radio resource management algorithm are proposed for green communication, to improve the probabilities of spectrum access and further increase the network capacity for sustainable environments. Also, a joint maximization of the energy efficiency and spectrum efficiency of the overall networks is considered since joint optimization of energy efficiency and spectrum efficiency is one of the goals of 5G wireless networks. Unfortunately, maximizing the energy efficiency results in low performance of the spectrum efficiency and vice versa. Therefore, there is an investigation on how to balance the trade-off that arises when maximizing both the energy efficiency and the spectrum efficiency simultaneously. Hence, a joint energy efficiency and spectrum efficiency trade-off algorithm is proposed for radio resource allocation in ultra-dense heterogeneous networks based on orthogonal frequency division multiple access. Lastly, a joint radio resource allocation with adaptive modulation and coding scheme is proposed to minimize the total transmit power across femtocells by considering the location and the service requirements of each user in the network. The performance of the proposed algorithms is evaluated by simulation and numerical analysis to demonstrate the impact of ultra-dense deployment of femtocells on the macrocell networks. The results show that the proposed algorithms offer improved performance in terms of throughput, fairness, power control, spectrum efficiency and energy efficiency. Also, the proposed algorithms display excellent performance in dynamic wireless environments

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Hierarchical Resource Allocation Framework for Hyper-Dense Small Cell Networks

    Get PDF
    This paper considers joint power control and subchannel allocation for co-tier interference mitigation in extremely dense small cell networks, which is formulated as a combinatorial optimization problem. Since it is intractable to obtain the globally optimum assignment policy for existing techniques due to the huge computation and communication overheads in ultra-dense scenario, in this paper, we propose a hierarchical resource allocation framework to achieve a desirable solution. Speci cally, the solution is obtained by dividing the original optimization problem into four stages in partially distributed manner. First, we propose a divide-and-conquer strategy by invoking clustering technique to decompose the dense network into smaller disjoint clusters. Then, within each cluster, one of the small cell access points is elected as a cluster head to carry out intra-cluster subchannel allocation with a low-complexity algorithm. To tackle the issue of inter-cluster interference, we further develop a distributed learning-base coordination mechanism. Moreover, a local power adjustment scheme is also presented to improve the system performance. Numerical results verify the ef ciency of the proposed hierarchical scheme, and demonstrate that our solution outperforms the state-of-the-art methods, especially for hyper-dense networks
    corecore