7 research outputs found

    Particle filtered modified compressed sensing and applications in visual tracking

    Get PDF
    The main idea of the thesis is to design an efficient tracking algorithm that is able to track moving objects in presence of spatial illumination variation. The state vectors constitute of the motion parameters and the illumination vectors. The illumination vector is designed as a sparse vector using the fact that the scene parameters (e.g. illumination) at any given instant, can have a sparse representation with respect to the basis i.e. only a few basis elements will contribute to the scene dynamics at each instant. The observation is the entire image frame.The non-linearity and the multimodality of the state-space necessitates the use of Particle Filter. The illumination vector along with motion makes the state-space large dimensional thus making the implementation of regular particle filter expensive. PF-MT has been designed to tackle this problem but it does not utilize the sparsity constraint and hence fails to detect the sparse illumination vector. So we design an algorithm that would use particle filter and importance sample on the motion or the \u27effective space\u27 and the mode tracking step of PF-MT is replaced by the Modified Compressed Sensing for estimating the \u27residual space\u27. Simulation and also experiments with real video demonstrate the advantage of the proposed algorithm over other existing PF based algorithms

    Particle Filtering for Large Dimensional State Spaces with Multimodal Observation Likelihoods

    Full text link
    We study efficient importance sampling techniques for particle filtering (PF) when either (a) the observation likelihood (OL) is frequently multimodal or heavy-tailed, or (b) the state space dimension is large or both. When the OL is multimodal, but the state transition pdf (STP) is narrow enough, the optimal importance density is usually unimodal. Under this assumption, many techniques have been proposed. But when the STP is broad, this assumption does not hold. We study how existing techniques can be generalized to situations where the optimal importance density is multimodal, but is unimodal conditioned on a part of the state vector. Sufficient conditions to test for the unimodality of this conditional posterior are derived. The number of particles, N, to accurately track using a PF increases with state space dimension, thus making any regular PF impractical for large dimensional tracking problems. We propose a solution that partially addresses this problem. An important class of large dimensional problems with multimodal OL is tracking spatially varying physical quantities such as temperature or pressure in a large area using a network of sensors which may be nonlinear and/or may have non-negligible failure probabilities.Comment: To appear in IEEE Trans. Signal Processin

    Particle filtering on large dimensional state spaces and applications in computer vision

    Get PDF
    Tracking of spatio-temporal events is a fundamental problem in computer vision and signal processing in general. For example, keeping track of motion activities from video sequences for abnormality detection or spotting neuronal activity patterns inside the brain from fMRI data. To that end, our research has two main aspects with equal emphasis - first, development of efficient Bayesian filtering frameworks for solving real-world tracking problems and second, understanding the temporal evolution dynamics of physical systems/phenomenon and build statistical models for them. These models facilitate prior information to the trackers as well as lead to intelligent signal processing for computer vision and image understanding. The first part of the dissertation deals with the key signal processing aspects of tracking and the challenges involved. In simple terms, tracking basically is the problem of estimating the hidden state of a system from noisy observed data(from sensors). As frequently encountered in real-life, due to the non-linear and non-Gaussian nature of the state spaces involved, Particle Filters (PF) give an approximate Bayesian inference under such problem setup. However, quite often we are faced with large dimensional state spaces together with multimodal observation likelihood due to occlusion and clutter. This makes the existing particle filters very inefficient for practical purposes. In order to tackle these issues, we have developed and implemented efficient particle filters on large dimensional state spaces with applications to various visual tracking problems in computer vision. In the second part of the dissertation, we develop dynamical models for motion activities inspired by human visual cognitive ability of characterizing temporal evolution pattern of shapes. We take a landmark shape based approach for the representation and tracking of motion activities. Basically, we have developed statistical models for the shape change of a configuration of ``landmark points (key points of interest) over time and to use these models for automatic landmark extraction and tracking, filtering and change detection from video sequences. In this regard, we demonstrate superior performance of our Non-Stationary Shape Activity(NSSA) model in comparison to other existing works. Also, owing to the large dimensional state space of this problem, we have utilized efficient particle filters(PF) for motion activity tracking. In the third part of the dissertation, we develop a visual tracking algorithm that is able to track in presence of illumination variations in the scene. In order to do that we build and learn a dynamical model for 2D illumination patterns based on Legendre basis functions. Under our problem formulation, we pose the visual tracking task as a large dimensional tracking problem in a joint motion-illumination space and thus use an efficient PF algorithm called PF-MT(PF with Mode Tracker) for tracking. In addition, we also demonstrate the use of change/abnormality detection framework for tracking across drastic illumination changes. Experiments with real-life video sequences demonstrate the usefulness of the algorithm while many other existing approaches fail. The last part of the dissertation explores the upcoming field of compressive sensing and looks into the possibilities of leveraging from particle filtering ideas to do better sequential reconstruction (i.e. tracking) of sparse signals from a small number of random linear measurements. Our preliminary results show several promising aspects to such an approach and it is an interesting direction of future research with many potential computer vision applications

    Tracking dynamic regions of texture and shape

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 137-142).The tracking of visual phenomena is a problem of fundamental importance in computer vision. Tracks are used in many contexts, including object recognition, classification, camera calibration, and scene understanding. However, the use of such data is limited by the types of objects we are able to track and the environments in which we can track them. Objects whose shape or appearance can change in complex ways are difficult to track as it is difficult to represent or predict the appearance of such objects. Furthermore, other elements of the scene may interact with the tracked object, changing its appearance, or hiding part or all of it from view. In this thesis, we address the problem of tracking deformable, dynamically textured regions under challenging conditions involving visual clutter, distractions, and multiple and prolonged occlusion. We introduce a model of appearance capable of compactly representing regions undergoing nonuniform, nonrepeating changes to both its textured appearance and shape. We describe methods of maintaining such a model and show how it enables efficient and effective occlusion reasoning. By treating the visual appearance as a dynamically changing textured region, we show how such a model enables the tracking of groups of people. By tracking groups of people instead of each individual independently, we are able to track in environments where it would otherwise be difficult, or impossible. We demonstrate the utility of the model by tracking many regions under diverse conditions, including indoor and outdoor scenes, near-field and far-field camera positions, through occlusion and through complex interactions with other visual elements, and by tracking such varied phenomena as meteorological data, seismic imagery, and groups of people.by Joshua Migdal.Ph.D

    A joint illumination and shape model for visual tracking

    No full text
    Visual tracking involves generating an inference about the motion of an object from measured image locations in a video sequence. In this paper we present a unified framework that incorporates shape and illumination in the context of visual tracking. The contribution of the work is twofold. First, we introduce a a multiplicative, low dimensional model of illumination that is defined by a linear combination of a set of smoothly changing basis functions. Secondly, we show that a small number of centroids in this new space can be used to represent the illumination conditions existing in the scene. These centroids can be learned from ground truth and are shown to generalize well to other objects of the same class for the scene. Finally we show how this illumination model can be combined with shape in a probabilistic sampling framework. Results of the joint shape-illumination model are demonstrated in the context of vehicle and face tracking in challenging conditions. 1
    corecore