16 research outputs found

    Deep neural network techniques for monaural speech enhancement: state of the art analysis

    Full text link
    Deep neural networks (DNN) techniques have become pervasive in domains such as natural language processing and computer vision. They have achieved great success in these domains in task such as machine translation and image generation. Due to their success, these data driven techniques have been applied in audio domain. More specifically, DNN models have been applied in speech enhancement domain to achieve denosing, dereverberation and multi-speaker separation in monaural speech enhancement. In this paper, we review some dominant DNN techniques being employed to achieve speech separation. The review looks at the whole pipeline of speech enhancement from feature extraction, how DNN based tools are modelling both global and local features of speech and model training (supervised and unsupervised). We also review the use of speech-enhancement pre-trained models to boost speech enhancement process. The review is geared towards covering the dominant trends with regards to DNN application in speech enhancement in speech obtained via a single speaker.Comment: conferenc

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    CMGAN: Conformer-Based Metric-GAN for Monaural Speech Enhancement

    Full text link
    Convolution-augmented transformers (Conformers) are recently proposed in various speech-domain applications, such as automatic speech recognition (ASR) and speech separation, as they can capture both local and global dependencies. In this paper, we propose a conformer-based metric generative adversarial network (CMGAN) for speech enhancement (SE) in the time-frequency (TF) domain. The generator encodes the magnitude and complex spectrogram information using two-stage conformer blocks to model both time and frequency dependencies. The decoder then decouples the estimation into a magnitude mask decoder branch to filter out unwanted distortions and a complex refinement branch to further improve the magnitude estimation and implicitly enhance the phase information. Additionally, we include a metric discriminator to alleviate metric mismatch by optimizing the generator with respect to a corresponding evaluation score. Objective and subjective evaluations illustrate that CMGAN is able to show superior performance compared to state-of-the-art methods in three speech enhancement tasks (denoising, dereverberation and super-resolution). For instance, quantitative denoising analysis on Voice Bank+DEMAND dataset indicates that CMGAN outperforms various previous models with a margin, i.e., PESQ of 3.41 and SSNR of 11.10 dB.Comment: 16 pages, 10 figures and 5 tables. arXiv admin note: text overlap with arXiv:2203.1514

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field

    Complex Neural Networks for Audio

    Get PDF
    Audio is represented in two mathematically equivalent ways: the real-valued time domain (i.e., waveform) and the complex-valued frequency domain (i.e., spectrum). There are advantages to the frequency-domain representation, e.g., the human auditory system is known to process sound in the frequency-domain. Furthermore, linear time-invariant systems are convolved with sources in the time-domain, whereas they may be factorized in the frequency-domain. Neural networks have become rather useful when applied to audio tasks such as machine listening and audio synthesis, which are related by their dependencies on high quality acoustic models. They ideally encapsulate fine-scale temporal structure, such as that encoded in the phase of frequency-domain audio, yet there are no authoritative deep learning methods for complex audio. This manuscript is dedicated to addressing the shortcoming. Chapter 2 motivates complex networks by their affinity with complex-domain audio, while Chapter 3 contributes methods for building and optimizing complex networks. We show that the naive implementation of Adam optimization is incorrect for complex random variables and show that selection of input and output representation has a significant impact on the performance of a complex network. Experimental results with novel complex neural architectures are provided in the second half of this manuscript. Chapter 4 introduces a complex model for binaural audio source localization. We show that, like humans, the complex model can generalize to different anatomical filters, which is important in the context of machine listening. The complex model\u27s performance is better than that of the real-valued models, as well as real- and complex-valued baselines. Chapter 5 proposes a two-stage method for speech enhancement. In the first stage, a complex-valued stochastic autoencoder projects complex vectors to a discrete space. In the second stage, long-term temporal dependencies are modeled in the discrete space. The autoencoder raises the performance ceiling for state of the art speech enhancement, but the dynamic enhancement model does not outperform other baselines. We discuss areas for improvement and note that the complex Adam optimizer improves training convergence over the naive implementation

    Analysis, Disentanglement, and Conversion of Singing Voice Attributes

    Get PDF
    Voice conversion is a prominent area of research, which can typically be described as the replacement of acoustic cues that relate to the perceived identity of the voice. Over almost a decade, deep learning has emerged as a transformative solution for this multifaceted task, offering various advancements to address different conditions and challenges in the field. One intriguing avenue for researchers in the field of Music Information Retrieval is singing voice conversion - a task that has only been subjected to neural network analysis and synthesis techniques over the last four years. The conversion of various singing voice attributes introduces new considerations, including working with limited datasets, adhering to musical context restrictions and considering how expression in singing is manifested in such attributes. Voice conversion with respect to singing techniques, for example, has received little attention even though its impact on the music industry would be considerable and important. This thesis therefore delves into problems related to vocal perception, limited datasets, and attribute disentanglement in the pursuit of optimal performance for the conversion of attributes that are scarcely labelled, which are covered across three research chapters. The first of these chapters describes the collection of perceptual pairwise dissimilarity ratings for singing techniques from participants. These were subsequently subjected to clustering algorithms and compared against existing ground truth labels. The results confirm the viability of using existing singing technique-labelled datasets for singing technique conversion (STC) using supervised machine learning strategies. A dataset of dissimilarity ratings and timbral maps was generated, illustrating how register and gender conditions affect perception. The first of these chapters describes the collection of perceptual pairwise dissimilarity ratings for singing techniques from participants. These were subsequently subjected to clustering algorithms and compared against existing ground truth labels. The results confirm the viability of using existing singing technique-labelled datasets for singing technique conversion (STC) using supervised machine learning strategies. A dataset of dissimilarity ratings and timbral maps was generated, illustrating how register and gender conditions affect perception. In response to these findings, an adapted version of an existing voice conversion system in conjunction with an existing labelled dataset was developed. This served as the first implementation of a model for zero-shot STC, although it exhibited varying levels of success. An alternative method of attribute conversion was therefore considered as a means towards performing satisfactorily realistic STC. By refining ‘voice identity’ conversion for singing, future research can be conducted where this attribute, along with more deterministic attributes (such as pitch, loudness, and phonetics) can be disentangled from an input signal, exposing information related to unlabelled attributes. Final experiments in refining the task of voice identity conversion for the singing domain were conducted as a stepping stone towards unlabelled attribute conversion. By performing comparative analyses between different features, singing and speech domains, and alternative loss functions, the most suitable process for singing voice attribute conversion (SVAC) could be established. In summary, this thesis documents a series of experiments that explore different aspects of the singing voice and conversion techniques in the pursuit of devising a convincing SVAC system
    corecore