3 research outputs found

    Component-Based Real-Time Operating System for Embedded Applications

    Get PDF
    Acceptance rate: 37%, Rank (CORE): AInternational audienceAs embedded systems must constantly integrate new functionalities, their developement cycles must be based on high-level abstractions, making the software design more flexible. CBSE provides an approach to these new requirements. However, low-level services provided by operating systems are an integral part of embedded applications, furthermore deployed on resource-limited devices. Therefore, the expected benefits of CBSE must not impact on the constraints imposed by the targetted domain, such as memory footprint, energy consumption, and execution time. In this paper, we present the componentization of a legacy industry-established Real-Time Operating System, and how component-based applications are built on top of it. We use the Think framework that allows to produce flexible systems while paying for flexibility only where desired. Performed experimentions show that the induced overhead is negligeable

    A Jitter-Free Kernel for Hard Real-Time Systems

    No full text
    Abstract. The paper presents advanced task management techniques featuring Boolean vectors and bitwise vector operations on kernel data structures in the context of the HARTEX TM hard real-time kernel. These techniques have been consistently applied to all aspects of task management and interaction. Hence, the execution time of system functions no longer depends on the number of tasks involved, resulting in predictable, jitter-free kernel operation. This approach has been further extended to time management resulting in a new type of kernel component, which can be used to implement timed multitasking- a novel technique providing for jitter-free execution of hard real-time tasks.
    corecore