864 research outputs found

    A hypothesis testing approach for communication over entanglement assisted compound quantum channel

    Full text link
    We study the problem of communication over a compound quantum channel in the presence of entanglement. Classically such channels are modeled as a collection of conditional probability distributions wherein neither the sender nor the receiver is aware of the channel being used for transmission, except for the fact that it belongs to this collection. We provide near optimal achievability and converse bounds for this problem in the one-shot quantum setting in terms of quantum hypothesis testing divergence. We also consider the case of informed sender, showing a one-shot achievability result that converges appropriately in the asymptotic and i.i.d. setting. Our achievability proof is similar in spirit to its classical counterpart. To arrive at our result, we use the technique of position-based decoding along with a new approach for constructing a union of two projectors, which can be of independent interest. We give another application of the union of projectors to the problem of testing composite quantum hypotheses.Comment: 21 pages, version 3. Added an application to the composite quantum hypothesis testing. Expanded introductio

    Applications of position-based coding to classical communication over quantum channels

    Get PDF
    Recently, a coding technique called position-based coding has been used to establish achievability statements for various kinds of classical communication protocols that use quantum channels. In the present paper, we apply this technique in the entanglement-assisted setting in order to establish lower bounds for error exponents, lower bounds on the second-order coding rate, and one-shot lower bounds. We also demonstrate that position-based coding can be a powerful tool for analyzing other communication settings. In particular, we reduce the quantum simultaneous decoding conjecture for entanglement-assisted or unassisted communication over a quantum multiple access channel to open questions in multiple quantum hypothesis testing. We then determine achievable rate regions for entanglement-assisted or unassisted classical communication over a quantum multiple-access channel, when using a particular quantum simultaneous decoder. The achievable rate regions given in this latter case are generally suboptimal, involving differences of Renyi-2 entropies and conditional quantum entropies.Comment: v4: 44 pages, v4 includes a simpler proof for an upper bound on one-shot entanglement-assisted capacity, also found recently and independently in arXiv:1804.0964

    One-shot entanglement-assisted quantum and classical communication

    Full text link
    We study entanglement-assisted quantum and classical communication over a single use of a quantum channel, which itself can correspond to a finite number of uses of a channel with arbitrarily correlated noise. We obtain characterizations of the corresponding one-shot capacities by establishing upper and lower bounds on them in terms of the difference of two smoothed entropic quantities. In the case of a memoryless channel, the upper and lower bounds converge to the known single-letter formulas for the corresponding capacities, in the limit of asymptotically many uses of it. Our results imply that the difference of two smoothed entropic quantities characterizing the one-shot entanglement-assisted capacities serves as a one-shot analogue of the mutual information, since it reduces to the mutual information, between the output of the channel and a system purifying its input, in the asymptotic, memoryless scenario.Comment: 10 pages, 2 figures. Title changed due to new results on the one-shot entanglement-assisted quantum communication. In addition, an error in the previous version regarding the converse proof of the one-shot EAC capacity has been correcte

    On Zero-Error Communication via Quantum Channels in the Presence of Noiseless Feedback

    Get PDF
    © 1963-2012 IEEE. We initiate the study of zero-error communication via quantum channels when the receiver and the sender have at their disposal a noiseless feedback channel of unlimited quantum capacity, generalizing Shannon's zero-error communication theory with instantaneous feedback. We first show that this capacity is only a function of the linear span of Choi-Kraus operators of the channel, which generalizes the bipartite equivocation graph of a classical channel, and which we dub non-commutative bipartite graph. Then, we go on to show that the feedback-assisted capacity is non-zero (allowing for a constant amount of activating noiseless communication) if and only if the non-commutative bipartite graph is non-trivial, and give a number of equivalent characterizations. This result involves a far-reaching extension of the conclusive exclusion of quantum states. We then present an upper bound on the feedback-assisted zero-error capacity, motivated by a conjecture originally made by Shannon and proved later by Ahlswede. We demonstrate that this bound to have many good properties, including being additive and given by a minimax formula. We also prove a coding theorem showing that this quantity is the entanglement-assisted capacity against an adversarially chosen channel from the set of all channels with the same Choi-Kraus span, which can also be interpreted as the feedback-assisted unambiguous capacity. The proof relies on a generalization of the Postselection Lemma (de Finetti reduction) that allows to reflect additional constraints, and which we believe to be of independent interest. This capacity is a relaxation of the feedback-assisted zero-error capacity; however, we have to leave open the question of whether they coincide in general. We illustrate our ideas with a number of examples, including classical-quantum channels and Weyl diagonal channels, and close with an extensive discussion of open questions
    • …
    corecore