8 research outputs found

    A hybrid strategy for real-time traffic signal control of urban road networks

    Get PDF
    The recently developed traffic signal control strategy known as traffic-responsive urban control (TUC) requires availability of a fixed signal plan that is sufficiently efficient under undersaturated traffic conditions. To drop this requirement, the well-known Webster procedure for fixed-signal control derivation at isolated junctions is appropriately employed for real-time operation based on measured flows. It is demonstrated via simulation experiments and field application that the following hold: 1) The developed real-time demand-based approach is a viable real-time signal control strategy for undersaturated traffic conditions. 2) It can indeed be used within TUC to drop the requirement for a prespecified fixed signal plan. 3) It may, under certain conditions, contribute to more efficient results, compared with the original TUC method

    Real-Time Estimation of Critical Vehicle Accumulation for Maximum Network Throughput

    Get PDF
    Perimeter traffic flow control has recently been found to be a practical and efficient control scheme in mitigating traffic congestion in urban road networks. This control scheme aims at stabilising the accumulation of vehicles of the socalled network fundamental diagram near critical accumulation to achieve maximum network throughput. Nevertheless, the maximum throughput in urban road networks may be observed over a range of accumulation-values. In this work, an adaptive perimeter flow control strategy is proposed that allows the automatic monitoring of the critical accumulation to help maintain the accumulation near the optimal range of accumulation-values, while network's throughput is maximised. To this end, we design a Kalman filter-based estimation scheme that utilises real-time measurements of circulating flow and accumulation of vehicles to produce estimates of the currently prevailing critical accumulation. We use real data from an urban area with 70 sensors and show that the area exhibits a network fundamental diagram with low scatter. We demonstrate that the fundamental diagram is reproduced under different days but its shape and critical occupancy depend on the applied semi-real-time signal control and the distribution of congestion in the network. Results from the application of the estimation algorithm to the experimental data indicate good estimation accuracy and performance, and rapid tracking behaviour

    Optimal Selection of Traffic Sensors: an Information-Theoretic Framework

    Get PDF
    This paper presents an information-theoretic framework for the optimal selection of sensors across a traffic network. For the selection of sensors a set covering integer programming (IP) problem is developed. A measure of correlation between random variables, reflecting a variable of interest, is introduced as a “distance” metric to provide sufficient coverage and information accuracy. The ultimate goal is to select sensors that are most informative about unsensed locations. The Kullback-Leibler divergence (relative entropy) is used to measure the dissimilarity between probability mass functions corresponding to different solutions of the IP program. Efficient model selection is a trade-off between the Kullback-Leibler divergence and the optimal cost of the IP program. The proposed framework is applied to the problem of developing sparse-measurement traffic flow models with empirical inductive loop-detector data of one week from a central business district with about sixty sensors. Results demonstrate that the obtained sparse-measurement rival models are able to preserve the shape and main features of the full-measurement traffic flow models

    A hybrid strategy for real-time traffic signal control of urban road networks

    No full text
    The recently developed traffic signal control strategy TUC requires availability of a fixed signal plan that is sufficiently efficient in undersaturated traffic conditions. To drop this requirement, the wellknown Webster procedure for fixed signal control derivation at isolated junctions is employed appropriately for real-time operation based on measured flows. It is demonstrated via simulation experiments and field application that: (a) The developed real-time demand-based approach is a viable real-time signal control strategy for undersaturated traffic conditions; (b) it can indeed be used within TUC to drop the requirement for a pre-specified fixed signal plan; (c) it may, under certain conditions, contribute to more efficient results compared with the original TUC method

    Design and Performance Analysis of Urban Traffic Control Systems

    Get PDF
    This study aims to investigate the design and performance of different architectures for urban traffic control with consideration of variations and uncertainties in traffic flow. The architectures, which ranging from centralised, semi-centralised to decentralised, are applied to different road networks. Both macroscopic and microscopic flow models are developed and used to calculate the performance of the systems. The macroscopic model is capable of generating essential traffic dynamics, such as traffic queues’ spillover, formation and dissipation. The control systems’ are tested under varies traffic demand levels. The results suggest that the centralised systems generally can outperform the decentralised systems, and the most benefit gained in the centralised control comes from its setting of signal offsets. On the other hand, the microscopic flow model captures the movement of each individual vehicle and drivers' rerouting behaviour with respect to traffic conditions. The test results showed that the drivers' response to the traffic condition can help a decentralised system perform as well as a centralised system. This study brings a new insight into cooperative transport management, and contributes to the state-of-the-art of urban traffic system design

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares
    corecore