2,430 research outputs found

    Simulating Behaviours to Face up an Emergency Evacuation

    Get PDF
    Computer based models describing pedestrian behavior in an emergency evacuation play a vital role in the development of active strategies that minimize the evacuation time when a closed area must be evacuated. The reference model has a hybrid structure where the dynamics of fire and smoke propagation are modeled by means of Cellular Automata and for simulating people's behavior we are using Intelligent Agents. The model consists of two sub-models, called environmental and pedestrian ones. As part of the pedestrian model, this paper concentrates in a methodology that is able to model some of the frequently observed human?s behaviors in evacuation exercises. Each agent will perceive what is happening around, select the options that exist in that context and then it makes a decision that will reflect its ability to cope with an emergency evacuation, called in this work, behavior. We also developed simple exercises where the model is applied to the simulation of an evacuation due to a potential hazard, such as fire, smoke or some kind of collapse.Fil: Tissera, Pablo Cristian. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo En Inteligencia Computacional; ArgentinaFil: Castro, Alicia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo En Inteligencia Computacional; ArgentinaFil: Printista, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Luque, Emilio. Universitat Autonoma de Barcelona; Españ

    A Comprehensive Study on Pedestrians' Evacuation

    Full text link
    Human beings face threats because of unexpected happenings, which can be avoided through an adequate crisis evacuation plan, which is vital to stop wound and demise as its negative results. Consequently, different typical evacuation pedestrians have been created. Moreover, through applied research, these models for various applications, reproductions, and conditions have been examined to present an operational model. Furthermore, new models have been developed to cooperate with system evacuation in residential places in case of unexpected events. This research has taken into account an inclusive and a 'systematic survey of pedestrian evacuation' to demonstrate models methods by focusing on the applications' features, techniques, implications, and after that gather them under various types, for example, classical models, hybridized models, and generic model. The current analysis assists scholars in this field of study to write their forthcoming papers about it, which can suggest a novel structure to recent typical intelligent reproduction with novel features

    Developing a model of evacuation after an earthquake in Lebanon

    Full text link
    This article describes the development of an agent-based model (AMEL, Agent-based Model for Earthquake evacuation in Lebanon) that aims at simulating the movement of pedestrians shortly after an earthquake. The GAMA platform was chosen to implement the model. AMEL is applied to a real case study, a district of the city of Beirut, Lebanon, which potentially could be stricken by a M7 earthquake. The objective of the model is to reproduce real life mobility behaviours that have been gathered through a survey in Beirut and to test different future scenarios, which may help the local authorities to target information campaigns.Comment: 8 pages, 11 figures, ISCRAM Vietnam Conference, November 201

    New approaches to evacuation modelling for fire safety engineering applications

    Get PDF
    This paper presents the findings of the workshop “New approaches to evacuation modelling”, which took place on the 11th of June 2017 in Lund (Sweden) within the Symposium of the International Association for Fire Safety Science (IAFSS). The workshop gathered international experts in the field of fire evacuation modelling from 19 different countries and was designed to build a dialogue between the fire evacuation modelling world and experts in areas outside of fire safety engineering. The contribution to fire evacuation modelling of five topics within research disciplines outside fire safety engineering (FSE) have been discussed during the workshop, namely 1) Psychology/Human Factors, 2) Sociology, 3) Applied Mathematics, 4) Transportation, 5) Dynamic Simulation and Biomechanics. The benefits of exchanging information between these two groups are highlighted here in light of the topic areas discussed and the feedback received by the evacuation modelling community during the workshop. This included the feasibility of development/application of modelling methods based on fields other than FSE as well as a discussion on their implementation strengths and limitations. Each subject area is here briefly presented and its links to fire evacuation modelling are discussed. The feedback received during the workshop is discussed through a set of insights which might be useful for the future developments of evacuation models for fire safety engineering

    Agent-based models of social behaviour and communication in evacuations:A systematic review

    Get PDF
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models

    e-Sanctuary: open multi-physics framework for modelling wildfire urban evacuation

    Get PDF
    The number of evacuees worldwide during wildfire keep rising, year after year. Fire evacuations at the wildland-urban interfaces (WUI) pose a serious challenge to fire and emergency services and are a global issue affecting thousands of communities around the world. But to date, there is a lack of comprehensive tools able to inform, train or aid the evacuation response and the decision making in case of wildfire. The present work describes a novel framework for modelling wildfire urban evacuations. The framework is based on multi-physics simulations that can quantify the evacuation performance. The work argues that an integrated approached requires considering and integrating all three important components of WUI evacuation, namely: fire spread, pedestrian movement, and traffic movement. The report includes a systematic review of each model component, and the key features needed for the integration into a comprehensive toolkit

    Agent-based models of social behaviour and communication in evacuations: A systematic review

    Full text link
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models.Comment: Pre-print submitted to Safety Science special issue following the 2023 Pedestrian and Evacuation Dynamics conferenc
    corecore