7 research outputs found

    Statistical Learning Approaches to Information Filtering

    Get PDF
    Enabling computer systems to understand human thinking or behaviors has ever been an exciting challenge to computer scientists. In recent years one such a topic, information filtering, emerges to help users find desired information items (e.g.~movies, books, news) from large amount of available data, and has become crucial in many applications, like product recommendation, image retrieval, spam email filtering, news filtering, and web navigation etc.. An information filtering system must be able to understand users' information needs. Existing approaches either infer a user's profile by exploring his/her connections to other users, i.e.~collaborative filtering (CF), or analyzing the content descriptions of liked or disliked examples annotated by the user, ~i.e.~content-based filtering (CBF). Those methods work well to some extent, but are facing difficulties due to lack of insights into the problem. This thesis intensively studies a wide scope of information filtering technologies. Novel and principled machine learning methods are proposed to model users' information needs. The work demonstrates that the uncertainty of user profiles and the connections between them can be effectively modelled by using probability theory and Bayes rule. As one major contribution of this thesis, the work clarifies the ``structure'' of information filtering and gives rise to principled solutions. In summary, the work of this thesis mainly covers the following three aspects: Collaborative filtering: We develop a probabilistic model for memory-based collaborative filtering (PMCF), which has clear links with classical memory-based CF. Various heuristics to improve memory-based CF have been proposed in the literature. In contrast, extensions based on PMCF can be made in a principled probabilistic way. With PMCF, we describe a CF paradigm that involves interactions with users, instead of passively receiving data from users in conventional CF, and actively chooses the most informative patterns to learn, thereby greatly reduce user efforts and computational costs. Content-based filtering: One major problem for CBF is the deficiency and high dimensionality of content-descriptive features. Information items (e.g.~images or articles) are typically described by high-dimensional features with mixed types of attributes, that seem to be developed independently but intrinsically related. We derive a generalized principle component analysis to merge high-dimensional and heterogenous content features into a low-dimensional continuous latent space. The derived features brings great conveniences to CBF, because most existing algorithms easily cope with low-dimensional and continuous data, and more importantly, the extracted data highlight the intrinsic semantics of original content features. Hybrid filtering: How to combine CF and CBF in an ``smart'' way remains one of the most challenging problems in information filtering. Little principled work exists so far. This thesis reveals that people's information needs can be naturally modelled with a hierarchical Bayesian thinking, where each individual's data are generated based on his/her own profile model, which itself is a sample from a common distribution of the population of user profiles. Users are thus connected to each other via this common distribution. Due to the complexity of such a distribution in real-world applications, usually applied parametric models are too restrictive, and we thus introduce a nonparametric hierarchical Bayesian model using Dirichlet process. We derive effective and efficient algorithms to learn the described model. In particular, the finally achieved hybrid filtering methods are surprisingly simple and intuitively understandable, offering clear insights to previous work on pure CF, pure CBF, and hybrid filtering

    Interactive Machine Learning with Applications in Health Informatics

    Full text link
    Recent years have witnessed unprecedented growth of health data, including millions of biomedical research publications, electronic health records, patient discussions on health forums and social media, fitness tracker trajectories, and genome sequences. Information retrieval and machine learning techniques are powerful tools to unlock invaluable knowledge in these data, yet they need to be guided by human experts. Unlike training machine learning models in other domains, labeling and analyzing health data requires highly specialized expertise, and the time of medical experts is extremely limited. How can we mine big health data with little expert effort? In this dissertation, I develop state-of-the-art interactive machine learning algorithms that bring together human intelligence and machine intelligence in health data mining tasks. By making efficient use of human expert's domain knowledge, we can achieve high-quality solutions with minimal manual effort. I first introduce a high-recall information retrieval framework that helps human users efficiently harvest not just one but as many relevant documents as possible from a searchable corpus. This is a common need in professional search scenarios such as medical search and literature review. Then I develop two interactive machine learning algorithms that leverage human expert's domain knowledge to combat the curse of "cold start" in active learning, with applications in clinical natural language processing. A consistent empirical observation is that the overall learning process can be reliably accelerated by a knowledge-driven "warm start", followed by machine-initiated active learning. As a theoretical contribution, I propose a general framework for interactive machine learning. Under this framework, a unified optimization objective explains many existing algorithms used in practice, and inspires the design of new algorithms.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147518/1/raywang_1.pd

    Image retrieval with relevance feedback based on genetic programing

    Get PDF
    Orientador: Ricardo da Silva TorresDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A técnica de realimentação de relevância tem sido utilizada com o intuito de incorporar a subjetividade da percepção visual de usuários à recuperação de imagens por conteúdo. Basicamente, o processo de realimentação de relevância consiste na: (i) exibição de um pequeno conjunto de imagens; (ii) rotulação dessas imagens pelo usuário, indicando quais são relevantes ou não; (iii) e finalmente, aprendizado das preferências do usuário a partir das imagens rotuladas e seleção de um novo conjunto de imagens para exibição. O processo se repete até que o usuário esteja satisfeito. Esta dissertação apresenta dois arcabouços para recuperação de imagens por conteúdo com realimentação de relevância. Esses arcabouços utilizam programação genética para assimilar a percepção visual do usuário por meio de uma combinação de descritores. A utilização de programação genética é motivada pela sua capacidade exploratória do espaço de busca uma vez que esse espaço se adequa ao objetivo principal dos arcabouços propostos: encontrar, dentre todas as possíveis funções de combinação de descritores, aquela que melhor representa as características visuais que um usuário deseja ressaltar na realização de uma consulta. Os arcabouços desenvolvidos foram validados por meio de uma série de experimentos, envolvendo três diferentes bases de imagens e descritores de cor, forma e textura para a caracterização do conteúdo dessas imagens. Os arcabouços propostos foram comparados com três outros métodos de recuperação de imagens por conteúdo com realimentação de relevância, considerando-se a eficiência e a efetividade no processo de recuperação. Os resultados experimentais mostraram a superioridade dos arcabouços propostos. As contribuições dessa dissertação são: (i) estudo sobre diferentes técnicas de realimentação de relevância; (ii) proposta de dois arcabouços para recuperação de imagens por conteúdo com realimentação de relevância baseado em programação genética; (iii) implementação dos métodos propostos, validando-os por meio de uma série de experimentos e comparações com outros métodosAbstract: Relevance Feedback has been used to incorporate the subjectivity of user visual perception in content-based image retrieval tasks. The relevance feedback process consists in the following steps: (i) showing a small set of images; (ii) indication of relevant or irrelevant images by the user; (iii) and finally, learning the user needs from her feedback, and selecting a new set of images to be showed. This procedure is repeated until the user is satisfied. This dissertation presents two content-based image retrieval frameworks with relevance feedback. These frameworks employ Genetic Programming to discover a combination of descriptors that characterize the user perception of image similarity. The use of genetic programming is motivated by its capability of exploring the search space, which deals with the major goal of the proposed frameworks: find, among all combination functions of descriptors, the one that best represents the user needs. Several experiments were conducted to validate the proposed frameworks. These experiments employed three different images databases and color, shape and texture descriptors to represent the content of database images. The proposed frameworks were compared with three other content-based image retrieval methods regarding their efficiency and effectiveness in the retrieval process. Experiment results demonstrate the superiority of the proposed methods. The contributions of this work are: (i) study of different relevance feedback techniques; (ii) proposal of two content-based image retrieval frameworks with relevance feedback, based on genetic programming; (ii) implementation of the proposed methods and their validation with several experiments, and comparison with other methodsMestradoBanco de DadosMestre em Ciência da Computaçã

    Concept Mining: A Conceptual Understanding based Approach

    Get PDF
    Due to the daily rapid growth of the information, there are considerable needs to extract and discover valuable knowledge from data sources such as the World Wide Web. Most of the common techniques in text mining are based on the statistical analysis of a term either word or phrase. These techniques consider documents as bags of words and pay no attention to the meanings of the document content. In addition, statistical analysis of a term frequency captures the importance of the term within a document only. However, two terms can have the same frequency in their documents, but one term contributes more to the meaning of its sentences than the other term. Therefore, there is an intensive need for a model that captures the meaning of linguistic utterances in a formal structure. The underlying model should indicate terms that capture the semantics of text. In this case, the model can capture terms that present the concepts of the sentence, which leads to discover the topic of the document. A new concept-based model that analyzes terms on the sentence, document and corpus levels rather than the traditional analysis of document only is introduced. The concept-based model can effectively discriminate between non-important terms with respect to sentence semantics and terms which hold the concepts that represent the sentence meaning. The proposed model consists of concept-based statistical analyzer, conceptual ontological graph representation, concept extractor and concept-based similarity measure. The term which contributes to the sentence semantics is assigned two different weights by the concept-based statistical analyzer and the conceptual ontological graph representation. These two weights are combined into a new weight. The concepts that have maximum combined weights are selected by the concept extractor. The similarity between documents is calculated based on a new concept-based similarity measure. The proposed similarity measure takes full advantage of using the concept analysis measures on the sentence, document, and corpus levels in calculating the similarity between documents. Large sets of experiments using the proposed concept-based model on different datasets in text clustering, categorization and retrieval are conducted. The experiments demonstrate extensive comparison between traditional weighting and the concept-based weighting obtained by the concept-based model. Experimental results in text clustering, categorization and retrieval demonstrate the substantial enhancement of the quality using: (1) concept-based term frequency (tf), (2) conceptual term frequency (ctf), (3) concept-based statistical analyzer, (4) conceptual ontological graph, (5) concept-based combined model. In text clustering, the evaluation of results is relied on two quality measures, the F-Measure and the Entropy. In text categorization, the evaluation of results is relied on three quality measures, the Micro-averaged F1, the Macro-averaged F1 and the Error rate. In text retrieval, the evaluation of results relies on three quality measures, the precision at 10 documents retrieved P(10), the preference measure (bpref), and the mean uninterpolated average precision (MAP). All of these quality measures are improved when the newly developed concept-based model is used to enhance the quality of the text clustering, categorization and retrieval

    Um arcabouço multimodal para geocodificação de objetos digitais

    Get PDF
    Orientador: Ricardo da Silva TorresTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Informação geográfica é usualmente encontrada em objetos digitais (como documentos, imagens e vídeos), sendo de grande interesse utilizá-la na implementação de diferentes serviços. Por exemplo, serviços de navegação baseados em mapas e buscas geográficas podem se beneficiar das localizações geográficas associadas a objetos digitais. A implementação destes serviços, no entanto, demanda o uso de coleções de dados geocodificados. Este trabalho estuda a combinação de conteúdo textual e visual para geocodificar objetos digitais e propõe um arcabouço de agregação de listas para geocodificação multimodal. A informação textual e visual de vídeos e imagens é usada para definir listas ordenadas. Em seguida, elas são combinadas e a nova lista ordenada resultante é usada para definir a localização geográfica de vídeos e imagens. Uma arquitetura que implementa essa proposta foi projetada de modo que módulos específicos para cada modalidade (e.g., textual ou visual) possam ser aperfeiçoados independentemente. Outro componente é o módulo de fusão responsável pela combinação das listas ordenadas definidas por cada modalidade. Outra contribuição deste trabalho é a proposta de uma nova medida de avaliação da efetividade de métodos de geocodificação chamada Weighted Average Score (WAS). Ela é baseada em ponderações de distâncias que permitem avaliar a efetividade de uma abordagem, considerando todos os resultados de geocodificação das amostras de teste. O arcabouço proposto foi validado em dois contextos: desafio Placing Task da iniciativa MediaEval 2012, que consiste em atribuir, automaticamente, coordenadas geográficas a vídeos; e geocodificação de fotos de prédios da Virginia Tech (VT) nos EUA. No contexto do desafio Placing Task, os resultados mostram como nossa abordagem melhora a geocodificação em comparação a métodos que apenas contam com uma modalidade (sejam descritores textuais ou visuais). Nós mostramos ainda que a proposta multimodal produziu resultados comparáveis às melhores submissões que também não usavam informações adicionais além daquelas disponibilizadas na base de treinamento. Em relação à geocodificação das fotos de prédios da VT, os experimentos demostraram que alguns dos descritores visuais locais produziram resultados efetivos. A seleção desses descritores e sua combinação melhoraram esses resultados quando a base de conhecimento tinha as mesmas características da base de testeAbstract: Geographical information is often enclosed in digital objects (like documents, images, and videos) and its use to support the implementation of different services is of great interest. For example, the implementation of map-based browser services and geographic searches may take advantage of geographic locations associated with digital objects. The implementation of such services, however, demands the use of geocoded data collections. This work investigates the combination of textual and visual content to geocode digital objects and proposes a rank aggregation framework for multimodal geocoding. Textual and visual information associated with videos and images are used to define ranked lists. These lists are later combined, and the new resulting ranked list is used to define appropriate locations. An architecture that implements the proposed framework is designed in such a way that specific modules for each modality (e.g., textual and visual) can be developed and evolved independently. Another component is a data fusion module responsible for combining seamlessly the ranked lists defined for each modality. Another contribution of this work is related to the proposal of a new effectiveness evaluation measure named Weighted Average Score (WAS). The proposed measure is based on distance scores that are combined to assess how effective a designed/tested approach is, considering its overall geocoding results for a given test dataset. We validate the proposed framework in two contexts: the MediaEval 2012 Placing Task, whose objective is to automatically assign geographical coordinates to videos; and the task of geocoding photos of buildings from Virginia Tech (VT), USA. In the context of Placing Task, obtained results show how our multimodal approach improves the geocoding results when compared to methods that rely on a single modality (either textual or visual descriptors). We also show that the proposed multimodal approach yields comparable results to the best submissions to the Placing Task in 2012 using no additional information besides the available development/training data. In the context of the task of geocoding VT building photos, performed experiments demonstrate that some of the evaluated local descriptors yield effective results. The descriptor selection criteria and their combination improved the results when the used knowledge base has the same characteristics of the test setDoutoradoCiência da ComputaçãoDoutora em Ciência da Computaçã

    An object-based approach to retrieval of image and video content

    Get PDF
    Promising new directions have been opened up for content-based visual retrieval in recent years. Object-based retrieval which allows users to manipulate video objects as part of their searching and browsing interaction, is one of these. It is the purpose of this thesis to constitute itself as a part of a larger stream of research that investigates visual objects as a possible approach to advancing the use of semantics in content-based visual retrieval. The notion of using objects in video retrieval has been seen as desirable for some years, but only very recently has technology started to allow even very basic object-location functions on video. The main hurdles to greater use of objects in video retrieval are the overhead of object segmentation on large amounts of video and the issue of whether objects can actually be used efficiently for multimedia retrieval. Despite this, there are already some examples of work which supports retrieval based on video objects. This thesis investigates an object-based approach to content-based visual retrieval. The main research contributions of this work are a study of shot boundary detection on compressed domain video where a fast detection approach is proposed and evaluated, and a study on the use of objects in interactive image retrieval. An object-based retrieval framework is developed in order to investigate object-based retrieval on a corpus of natural image and video. This framework contains the entire processing chain required to analyse, index and interactively retrieve images and video via object-to-object matching. The experimental results indicate that object-based searching consistently outperforms image-based search using low-level features. This result goes some way towards validating the approach of allowing users to select objects as a basis for searching video archives when the information need dictates it as appropriate
    corecore