34,039 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author
    • …
    corecore