14 research outputs found

    Empirical Research on Machine Learning Models and Feature Selection for Traffic Congestion Prediction in Smart Cities

    Get PDF
    The development of smart cities has occurred over the past ten years. One primary goal of “smart city” initiatives is to lessen vehicle congestion. Several innovative technologies, including vehicular communications, navigation, and traffic control, have been created by Vehicle Networking System to address this problem. The traffic data gathered by smart devices aids in the forecasting of traffic in smart cities. This project created an Intelligent Traffic Congestion Management System (ITCMS) that uses machine learning techniques and traffic data from Kaggle to decrease the amount of time spent stuck in traffic. This study aims to assess feature selection methods and machine learning models for traffic forecasting in smart cities. The feature dimension is reduced using feature selection techniques, such information gain, correlation attribute, and principal component analysis. The recommended model successfully predicted traffic flow, assisting in the alleviation of congestion. The principal component analysis with random forest model outperforms the other machine learning models and has a 95% accuracy rate

    Design and Implementation of Intelligent Traffic-Management System for Smart Cities using Roaming Agent and Deep Neural Network (RAD2N)

    Get PDF
    In metropolitan areas, the exponential growth in quantity of vehicles has instigated gridlock, pollution, and delays in the transportation of freight. IoT is the modern revolution which pushes the world towards intelligent management systems and automated procedures. This makes a significant contribution to automation and intelligent societies. Traffic regulation and effective congestion management assist conserve many priceless resources. In order to recognize, collect and send data, autonomous vehicles are furnished with IoT powered Intelligent Traffic Management System (ITMS) having a set of sensors.  Moreover, machine learning (ML) algorithms can also be employed to enhance the transportation system.  Traffic jams, delays, and a high death rate are the results of the problems that the current transport management systems face.  In this paper, an active traffic control for VANET is proposed which merges Roaming Agents (RA) with deep neural networks (DNN). The effectiveness of the DNN with RA (RAD2N) routing method in VANETs is evaluated experimentally and compared with the traditional ML and other DL routing algorithms. Several traffic congestion indicators, including delay, packet delivery ratio (PDR) and throughput are used to validate RAD2N. The outcomes demonstrate that the proposed approach delivers lower latency and energy consumption

    GMAN: A Graph Multi-Attention Network for Traffic Prediction

    Full text link
    Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.Comment: AAAI 2020 pape

    Improved QoS with Fog computing based on Adaptive Load Balancing Algorithm

    Get PDF
    As the number of sensing devices rises, traffic on the cloud servers is boosting day by day. When a device connected to the IoTwants access to data, cloud computing encourages the pairing of fog & cloud nodes to provide that information. One of the key needs in a fog-based cloud system, is efficient job scheduling to decrease the data delay and improve the QoS (Quality of Service). The researchers have used a variety of strategies to maintain the QoS criteria. However, because of the increased service delay caused by the busty traffic, job scheduling is impacted which leads to the unbalanced load on the fog environment. The proposed work uses a novel model which curates the features and working style of Genetic algorithm and the optimization algorithm with the load balancing scheduling on the fog nodes. The performance of the proposed hybrid model is contrasted with the other well-known algorithms in contrast to the fundamental benchmark optimization test functions. The proposed work displays better results in sustaining the task scheduling process when compared to the existing algorithms, which include Round Robin (RR) method, Hybrid RR, Hybrid Threshold based and Hybrid Predictive Based models, which ensures the efficacy of the proposed load balancing model to improve the quality of service in fog environment
    corecore