3 research outputs found

    New variants of variable neighbourhood search for 0-1 mixed integer programming and clustering

    Get PDF
    Many real-world optimisation problems are discrete in nature. Although recent rapid developments in computer technologies are steadily increasing the speed of computations, the size of an instance of a hard discrete optimisation problem solvable in prescribed time does not increase linearly with the computer speed. This calls for the development of new solution methodologies for solving larger instances in shorter time. Furthermore, large instances of discrete optimisation problems are normally impossible to solve to optimality within a reasonable computational time/space and can only be tackled with a heuristic approach. In this thesis the development of so called matheuristics, the heuristics which are based on the mathematical formulation of the problem, is studied and employed within the variable neighbourhood search framework. Some new variants of the variable neighbourhood searchmetaheuristic itself are suggested, which naturally emerge from exploiting the information from the mathematical programming formulation of the problem. However, those variants may also be applied to problems described by the combinatorial formulation. A unifying perspective on modern advances in local search-based metaheuristics, a so called hyper-reactive approach, is also proposed. Two NP-hard discrete optimisation problems are considered: 0-1 mixed integer programming and clustering with application to colour image quantisation. Several new heuristics for 0-1 mixed integer programming problem are developed, based on the principle of variable neighbourhood search. One set of proposed heuristics consists of improvement heuristics, which attempt to find high-quality near-optimal solutions starting from a given feasible solution. Another set consists of constructive heuristics, which attempt to find initial feasible solutions for 0-1 mixed integer programs. Finally, some variable neighbourhood search based clustering techniques are applied for solving the colour image quantisation problem. All new methods presented are compared to other algorithms recommended in literature and a comprehensive performance analysis is provided. Computational results show that the methods proposed either outperform the existing state-of-the-art methods for the problems observed, or provide comparable results. The theory and algorithms presented in this thesis indicate that hybridisation of the CPLEX MIP solver and the VNS metaheuristic can be very effective for solving large instances of the 0-1 mixed integer programming problem. More generally, the results presented in this thesis suggest that hybridisation of exact (commercial) integer programming solvers and some metaheuristic methods is of high interest and such combinations deserve further practical and theoretical investigation. Results also show that VNS can be successfully applied to solving a colour image quantisation problem.EThOS - Electronic Theses Online ServiceMathematical Institute, Serbian Academy of Sciences and ArtsGBUnited Kingdo

    Some applications of continuous variable neighbourhood search metaheuristic (mathematical modelling)

    Get PDF
    In the real world, many problems are continuous in nature. In some cases, finding the global solutions for these problems is di±cult. The reason is that the problem's objective function is non convex, nor concave and even not differentiable. Tackling these problems is often computationally too expensive. Although the development in computer technologies are increasing the speed of computations, this often is not adequate, particularly if the size of the problem's instance are large. Applying exact methods on some problems may necessitate their linearisation. Several new ideas using heuristic approaches have been considered particularly since they tackle the problems within reasonable computational time and give an approximate solution. In this thesis, the variable neighbourhood search (VNS) metaheuristic (the framework for building heuristic) has been considered. Two variants of variable neighbourhood search metaheuristic have been developed, continuous variable neighbourhood search and reformulation descent variable neighbourhood search. The GLOB-VNS software (Drazic et al., 2006) hybridises the Microsoft Visual Studio C++ solver with variable neighbourhood search metaheuristics. It has been used as a starting point for this research and then adapted and modified for problems studied in this thesis. In fact, two problems have been considered, censored quantile regression and the circle packing problem. The results of this approach for censored quantile regression outperforms other methods described in the literature, and the near-optimal solutions are obtained in short running computational time. In addition, the reformulation descent variable neighbourhood search variant in solving circle packing problems is developed and the computational results are provided.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore