204 research outputs found

    Structural Optimization of Composite Cross-Sections and Elements using Energy Methods

    Get PDF
    Structural optimization has gained considerable attention in the design of structural engineering structures, especially in the preliminary phase. This study introduces an unconventional approach for structural optimization by utilizing the Energy method with Integral Material Behavior (EIM), based on the Lagrange’s principle of minimum potential energy. An automated two-level optimization search process is proposed, which integrates the EIM, as an alternative method for nonlinear structural analysis, and the bilevel optimization. The proposed procedure secures the equilibrium through minimizing the potential energy on one level, and on a higher level, a design objective function. For this, the most robust strategy of bilevel optimization, the nested method is used. The function of the potential energy is investigated along with its instabilities for physical nonlinear analysis through principle examples, by which the advantages and limitations using this method are reviewed. Furthermore, optimization algorithms are discussed. A numerical fully functional code is developed for nonlinear cross section, element and 2D frame analysis, utilizing different finite elements and is verified against existing EIM programs. As a proof of concept, the method is applied on selected examples using this code on cross section and element level. For the former one a comparison is made with standard procedure, by employing the equilibrium equations within the constrains. The validation of the element level was proven by a theoretical solution of an arch bridge and finally, a truss bridge is optimized. Most of the principle examples are chosen to be adequate for the everyday engineering practice, to demonstrate the effectiveness of the proposed method. This study implies that with further development, this method could become just as competitive as the conventional structural optimization techniques using the Finite Element Method

    A compromise-based particle swarm optimization algorithm for solving Bi-level programming problems with fuzzy parameters

    Full text link
    © 2015 IEEE. Bi-level programming has arisen to handle decentralized decision-making problems that feature interactive decision entities distributed throughout a bi-level hierarchy. Fuzzy parameters often appear in such a problem in applications and this is called a fuzzy bi-level programming problem. Since the existing approaches lack universality in solving such problems, this study aims to develop a particle swarm optimization (PSO) algorithm to solve fuzzy bi-level programming problems in the linear and nonlinear versions. In this paper, we first present a general fuzzy bi-level programming problem and discuss related theoretical properties based on a fuzzy number ranking method commonly used. A PSO algorithm is then developed to solve the fuzzy bi-level programming problem based on different compromised selections by decision entities on the feasible degree for constraint conditions under fuzziness. Lastly, an illustrative numerical example and two benchmark examples are adopted to state the effectiveness of the compromise-based PSO algorithm

    Stochastic Multilevel Programming with a Hybrid Intelligent Algorithm

    Get PDF
    A framework of stochastic multilevel programming is proposed for modelling decentralized decision-making problem in stochastic environment. According to different decision criteria, the stochastic decentralized decision-making problem is formulated as expected value multilevel programming, and chanceconstrained multilevel programming. In order to solve the proposed stochastic multilevel programming models for the Stackelberg-Nash equilibriums, genetic algorithms, neural networks and stochastic simulation are integrated to produce a hybrid intelligent algorithm. Finally, two numerical examples are provided to illustrate the effectiveness of the hybrid intelligent algorithm

    A solution to bi/tri-level programming problems using particle swarm optimization

    Full text link
    © 2016 Elsevier Inc. Multilevel (including bi-level and tri-level) programming aims to solve decentralized decision-making problems that feature interactive decision entities distributed throughout a hierarchical organization. Since the multilevel programming problem is strongly NP-hard and traditional exact algorithmic approaches lack efficiency, heuristics-based particle swarm optimization (PSO) algorithms have been used to generate an alternative for solving such problems. However, the existing PSO algorithms are limited to solving linear or small-scale bi-level programming problems. This paper first develops a novel bi-level PSO algorithm to solve general bi-level programs involving nonlinear and large-scale problems. It then proposes a tri-level PSO algorithm for handling tri-level programming problems that are more challenging than bi-level programs and have not been well solved by existing algorithms. For the sake of exploring the algorithms' performance, the proposed bi/tri-level PSO algorithms are applied to solve 62 benchmark problems and 810 large-scale problems which are randomly constructed. The computational results and comparison with other algorithms clearly illustrate the effectiveness of the proposed PSO algorithms in solving bi-level and tri-level programming problems

    Multilevel decision-making: A survey

    Full text link
    © 2016 Elsevier Inc. All rights reserved. Multilevel decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a multiple level hierarchy. Significant efforts have been devoted to understanding the fundamental concepts and developing diverse solution algorithms associated with multilevel decision-making by researchers in areas of both mathematics/computer science and business areas. Researchers have emphasized the importance of developing a range of multilevel decision-making techniques to handle a wide variety of management and optimization problems in real-world applications, and have successfully gained experience in this area. It is thus vital that a high quality, instructive review of current trends should be conducted, not only of the theoretical research results but also the practical developments in multilevel decision-making in business. This paper systematically reviews up-to-date multilevel decision-making techniques and clusters related technique developments into four main categories: bi-level decision-making (including multi-objective and multi-follower situations), tri-level decision-making, fuzzy multilevel decision-making, and the applications of these techniques in different domains. By providing state-of-the-art knowledge, this survey will directly support researchers and practical professionals in their understanding of developments in theoretical research results and applications in relation to multilevel decision-making techniques

    Solving a type of biobjective bilevel programming problem using NSGA-II

    Get PDF
    AbstractThis paper considers a type of biobjective bilevel programming problem, which is derived from a single objective bilevel programming problem via lifting the objective function at the lower level up to the upper level. The efficient solutions to such a model can be considered as candidates for the after optimization bargaining between the decision-makers at both levels who retain the original bilevel decision-making structure. We use a popular multiobjective evolutionary algorithm, NSGA-II, to solve this type of problem. The algorithm is tested on some small-dimensional benchmark problems from the literature. Computational results show that the NSGA-II algorithm is capable of solving the problems efficiently and effectively. Hence, it provides a promising visualization tool to help the decision-makers find the best trade-off in bargaining

    Presentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem

    Get PDF
    The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefore solving these problems would be significant. The literature shows several algorithms to solve different forms of the bi-level programming problems (BLPP).Not only there is no any algorithm for solving quad-level programming problem, but also it has not been studied by any researcher.  The most important part of this paper is presentation and studying of a new model of non-linear multi-level problems.Then we attempt to develop an effective approach based on Taylor theorem for solving the non-linear quad-level programming problem. In this approach, by using aproposedsmoothing method the quad-level programming problem is converted to a linear single problem. Finally, the single level problem is solved using the algorithm based on Taylor algorithm. The presented approach achieves an efficient and feasible solution in an appropriate time which has been evaluated by solving test problems

    Line Search and Genetic Approaches for Solving Linear Tri-level Programming Problem

    Get PDF
    In the recent years, the multi-level programming problems specially the bi-level and tri-level programming problems (TLPP) are interested by many researchers and these problems, particularly TLPP, are known as an appropriate tool to solve the real problems in several areas of optimization such as economic, traffic, finance, management, transportation, computer science and so on. Also, it has been proven that the general bi-level and TLPP are NP-hard problems. The literature shows it has been proposed a few attempts for solving using TLPP. In this paper, we attempt to propose a new function for smoothing the tri-level programming problem after using Karush-Kuhn-Tucker condition, also we develop two effective approaches, one based on Genetic algorithm, which it is an approximate approach, and the other based on the hybrid algorithm by combining the proposed method based on penalty function and the line search algorithm for solving the linear TLPP. In both of these approaches, by using the Karush-Kuhn-Tucker condition the TLPP is converted to a non-smooth single problem, and then it is smoothed by proposed functions. Finally, the smoothed problem is solved using both of the proposed approaches. The presented approaches achieve an efficient and feasible solution in an appropriate time which has been evaluated by comparing to references and test problems
    corecore