6,360 research outputs found

    A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics

    Get PDF
    To appear in IEEE Internet of Things JournalTo appear in IEEE Internet of Things JournalTo appear in IEEE Internet of Things JournalTo appear in IEEE Internet of Things JournalInternet of Things (IoT) devices and applications are being deployed in our homes and workplaces. These devices often rely on continuous data collection to feed machine learning models. However, this approach introduces several privacy and efficiency challenges, as the service operator can perform unwanted inferences on the available data. Recently, advances in edge processing have paved the way for more efficient, and private, data processing at the source for simple tasks and lighter models, though they remain a challenge for larger, and more complicated models. In this paper, we present a hybrid approach for breaking down large, complex deep neural networks for cooperative, privacy-preserving analytics. To this end, instead of performing the whole operation on the cloud, we let an IoT device to run the initial layers of the neural network, and then send the output to the cloud to feed the remaining layers and produce the final result. In order to ensure that the user's device contains no extra information except what is necessary for the main task and preventing any secondary inference on the data, we introduce Siamese fine-tuning. We evaluate the privacy benefits of this approach based on the information exposed to the cloud service. We also assess the local inference cost of different layers on a modern handset. Our evaluations show that by using Siamese fine-tuning and at a small processing cost, we can greatly reduce the level of unnecessary, potentially sensitive information in the personal data, and thus achieving the desired trade-off between utility, privacy, and performance

    A survey of machine and deep learning methods for privacy protection in the Internet of things

    Get PDF
    Recent advances in hardware and information technology have accelerated the proliferation of smart and interconnected devices facilitating the rapid development of the Internet of Things (IoT). IoT applications and services are widely adopted in environments such as smart cities, smart industry, autonomous vehicles, and eHealth. As such, IoT devices are ubiquitously connected, transferring sensitive and personal data without requiring human interaction. Consequently, it is crucial to preserve data privacy. This paper presents a comprehensive survey of recent Machine Learning (ML)- and Deep Learning (DL)-based solutions for privacy in IoT. First, we present an in depth analysis of current privacy threats and attacks. Then, for each ML architecture proposed, we present the implementations, details, and the published results. Finally, we identify the most effective solutions for the different threats and attacks.This work is partially supported by the Generalitat de Catalunya under grant 2017 SGR 962 and the HORIZON-GPHOENIX (101070586) and HORIZON-EUVITAMIN-V (101093062) projects.Peer ReviewedPostprint (published version
    • …
    corecore