584 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    OPTIMAL ROUTE DETERMINATION FOR POSTAL DELIVERY USING ANT COLONY OPTIMIZATION ALGORITHM

    Get PDF
    There are a lot of optimization challenges in the world, as we all know. The vehicle routing problem is one of the more complex and high-level problems. Vehicle Routing Problem is a real-life problem in the Postal Delivery System logistics and, if not properly attended to, can lead to wastage of resources that could have been directed towards other things. Several studies have been carried out to tackle this problem using different techniques and algorithms. This study used the Ant Colony Optimization Algorithm along with some powerful APIs to find an optimal route for the delivery of posts to customers in a Postal Delivering System. When Ant Colony Optimization Algorithm is used to solve the vehicle routing problem in transportation systems, each Ant's journey is mere “part” of a feasible solution. To put it in another way, numerous ants' pathways might make up a viable solution. Routes are determined for a delivery vehicle, with the objective of minimizing customer waiting time and operation cost. Experimental results indicate that the solution is optimal and more accurat

    Waste Collection Vehicle Routing Problem: Literature Review

    Get PDF
    Waste generation is an issue which has caused wide public concern in modern societies, not only for the quantitative rise of the amount of waste generated, but also for the increasing complexity of some products and components. Waste collection is a highly relevant activity in the reverse logistics system and how to collect waste in an efficient way is an area that needs to be improved. This paper analyzes the major contribution about Waste Collection Vehicle Routing Problem (WCVRP) in literature. Based on a classification of waste collection (residential, commercial and industrial), firstly the key findings for these three types of waste collection are presented. Therefore, according to the model (Node Routing Problems and Arc Routing problems) used to represent WCVRP, different methods and techniques are analyzed in this paper to solve WCVRP. This paper attempts to serve as a roadmap of research literature produced in the field of WCVRP

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    An Adaptive Iterated Local Search for the Mixed Capacitated General Routing Problem

    Get PDF
    We study the mixed capacitated general routing problem (MCGRP) in which a fleet of capacitated vehicles has to serve a set of requests by traversing a mixed weighted graph. The requests may be located on nodes, edges, and arcs. The problem has theoretical interest because it is a generalization of the capacitated vehicle routing problem (CVRP), the capacitated arc routing problem (CARP), and the general routing problem. It is also of great practical interest since it is often a more accurate model for real-world cases than its widely studied specializations, particularly for so-called street routing applications. Examples are urban waste collection, snow removal, and newspaper delivery. We propose a new iterated local search metaheuristic for the problem that also includes vital mechanisms from adaptive large neighborhood search combined with further intensification through local search. The method utilizes selected, tailored, and novel local search and large neighborhood search operators, as well as a new local search strategy. Computational experiments show that the proposed metaheuristic is highly effective on five published benchmarks for the MCGRP. The metaheuristic yields excellent results also on seven standard CARP data sets, and good results on four well-known CVRP benchmarks, including improvement of the best known upper bound for one instance

    A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks

    Full text link
    We consider the problem of optimally designing a body wireless sensor network, while taking into account the uncertainty of data generation of biosensors. Since the related min-max robustness Integer Linear Programming (ILP) problem can be difficult to solve even for state-of-the-art commercial optimization solvers, we propose an original heuristic for its solution. The heuristic combines deterministic and probabilistic variable fixing strategies, guided by the information coming from strengthened linear relaxations of the ILP robust model, and includes a very large neighborhood search for reparation and improvement of generated solutions, formulated as an ILP problem solved exactly. Computational tests on realistic instances show that our heuristic finds solutions of much higher quality than a state-of-the-art solver and than an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1

    Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization

    Get PDF
    This dissertation presents metaheuristic approaches in the areas of genetic algorithms and ant colony optimization to combinatorial optimization problems. Ant colony optimization for the split delivery vehicle routing problem An Ant Colony Optimization (ACO) based approach is presented to solve the Split Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one vehicle. The proposed ACO based algorithm is tested on benchmark problems previously published in the literature. The results indicate that the ACO based approach is competitive in both solution quality and solution time. In some instances, the ACO method achieves the best known results to date for the benchmark problems. Hybrid genetic algorithm for the split delivery vehicle routing problem (SDVRP) The Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field of transportation and logistics. There are various variants of VRP which have been developed of the years; one of which is the Split Delivery Vehicle Routing Problem (SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid genetic algorithm comprising a combination of ant colony optimization, genetic algorithm, and heuristics is proposed and tested on benchmark SDVRP test problems. Genetic algorithm approach to solve the hospital physician scheduling problem Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals and high levels of service time variation. The problem is to find a shift schedule that considers queuing effects and minimizes average patient waiting time and maximizes physicians’ shift preference subject to constraints on shift start times, shift durations and total physician hours available per day. An approach that utilizes a genetic algorithm and discrete event simulation to solve the physician scheduling problem in a hospital is proposed. The approach is tested on real world datasets for physician schedules

    Adaptive large neighborhood search algorithm – performance evaluation under parallel schemes & applications

    Get PDF
    Adaptive Large Neighborhood Search (ALNS) is a fairly recent yet popular single-solution heuristic for solving discrete optimization problems. Even though the heuristic has been a popular choice for researchers in recent times, the parallelization of this algorithm is not widely studied in the literature compared to the other classical metaheuristics. To extend the existing literature, this study proposes several different parallel schemes to parallelize the basic/sequential ALNS algorithm. More specifically, seven different parallel schemes are employed to target different characteristics of the ALNS algorithm and the capability of the local computers. The schemes of this study are implemented in a master-slave architecture to manage and assign loads in processors of the local computers. The overall goal is to simultaneously explore different areas of the search space in an attempt to escape the local minima, taking effective steps toward the optimal solution and, to the end, accelerating the convergence of the ALNS algorithm. The performance of the schemes is tested by solving a capacitated vehicle routing problem (CVRP) with available wellknown test instances. Our computational results indicate that all the parallel schemes are capable of providing a competitive optimality gap in solving CVRP within our investigated test instances. However, the parallel scheme (scheme 1), which runs the ALNS algorithm independently within different slave processors (e.g., without sharing any information with other slave processors) until the synchronization occurs only when one of the processors meets its predefined termination criteria and reports the solution to the master processor, provides the best running time with solving the instances approximately 10.5 times faster than the basic/sequential ALNS algorithm. These findings are applied in a real-life fulfillment process using mixed-mode delivery with trucks and drones. Complex but optimized routes are generated in a short time that is applicable to perform last-mile delivery to customers
    • 

    corecore