5 research outputs found

    Modeling of OLED degradation for prediction and compensation of AMOLED aging artifacts

    Get PDF
    Degradation is still the most challenging issue for OLED, which causes the image-sticking artifact on AMOLED displays and limits their lifetime. To overcome the demerit, OLED degradation is modeled in this thesis, and compensation based on the models is applied for AMOLEDs. A data-counting model is firstly developed to quantitatively evaluate the degradation on OLEDs, with consideration of the accumulation stress during operation. An electro-optical model is further built, based on an equivalent circuit. It can simulate the electro-optical characteristic (I-V, Eff-V) and the degradation behaviors in aging process. Besides, the correlation model is aimed to derive the current efficiency decay with measurable electrical values, delivering more dependable results at strongly aged state. The prediction and compensation are implemented based on developed models. The results show that the models exactly predict the efficiency decay during operation. The image-sticking aging artifact on AMOLED can be suppressed by applying compensation, so that the display lifetime is extended.Durch das Einbrennen von Bildern in AMOLED Displays wird deren Lebensdauer verringert; dieser Qualitätsverlust stellt nach wie vor die größte Herausforderung für die OLED Technologie dar. In dieser Thesis wird die Degradation der OLEDs modelliert und eine Kompensierung anhand der Modelle erreicht. Zunächst wurde ein Data-counting Modell entwickelt, um die Degradation von OLEDs unter Berücksichtigung der akkumulierten Belastung während des Betriebs quantitativ zu bewerten. Des Weiteren wurde ein elektro-optisches Modell entwickelt, das auf einem äquivalenten Schaltungsmodell basiert. Es kann die elektro-optischen Eigenschaft (I-V, Eff-V) und das Degradationsverhalten im Alterungsprozess simulieren. Außer den beiden Modellen wird noch ein Korrelationsmodell entwickelt, das darauf abzielt, die Abnahme der Stromeffizienz aus den messbaren elektrischen Werten abzuleiten. Dieses Modell liefert im stark gealterten Zustand zuverlässigere Ergebnisse. Aufbauend auf die entwickelten Modelle wurden die Vorhersage und die Kompensierung implementiert. Die Ergebnisse zeigen, dass die Modelle den Effizienzverlust während des Betriebes genau vorhersagen. Das Einbrennen des Bildes in das AMOLED-Display kann durch das Anwenden der Kompensierung unterdrückt werden, so dass die Lebensdauer des Displays verlängert wird

    Current Programmed Active Pixel Sensors for Large Area Diagnostic X-ray Imaging

    Get PDF
    Rapid progress over the last decade on large area thin film transistor (TFT) arrays led to the emergence of high-performance, low-power, low-cost active matrix flat panel imagers. Despite the shortcomings associated with the instability and low mobility of TFTs, the amorphous silicon TFT technology still remains the primary solution for the backplane of flat panel imagers. The use of a-Si:H TFTs as the building block of the large area integrated circuit becomes challenging particularly when the role of the TFT is extended from traditional switching applications to on-pixel signal amplifier for large area digital imaging. This is the idea behind active pixel sensor (APS) architectures in which under each pixel an amplifier circuit consisting of one or two switching TFTs integrated with one amplifying TFT is fabricated. To take advantage of the full potential of these amplifiers, it is crucial to develop APS architectures to compensate for the limitations of the TFTs. In this thesis several APS architectures are designed, simulated, fabricated, and tested addressing these challenges using the mask sets presented in Appendix A. The proposed APS architectures can compensate for inherent stabilities of the comprising TFTs. Therefore, the sensitivity of their output data to the transistor variations is significantly suppressed. This is achieved by using a well defined external current source instead of the traditional voltage source to reset the APS architectures during the reset cycle of their periodic operation. The performance of these circuits is analyzed in terms of their stability, settling time, noise, and temperature-dependence. For appropriate readout of the current mode APS architectures, high gain transresistance amplifiers with correlated double sampling capability is designed, simulated and fabricated in CMOS technology. Measurement and measurement based calculation results reveal that the proposed APS architectures can meet even the stringent requirements of low noise, real-time digital fluoroscopy

    High-Dynamic-Range and High-Efficiency Near-Eye Display Systems

    Get PDF
    Near-eye display systems, which project digital information directly into the human visual system, are expected to revolutionize the interface between digital information and physical world. However, the image quality of most near-eye displays is still far inferior to that of direct-view displays. Both light engine and imaging optics of near-eye display systems play important roles to the degraded image quality. In addition, near-eye displays also suffer from a relatively low optical efficiency, which severely limits the device operation time. Such an efficiency loss originates from both light engines and projection processes. This dissertation is devoted to addressing these two critical issues from the entire system perspective. In Chapter 2, we propose useful design guidelines for the miniature light-emitting diode (mLED) backlit liquid crystal displays (LCDs) to mitigate halo artifacts. After developing a high dynamic range (HDR) light engine in Chapter 3, we establish a systematic image quality evaluation model for virtual reality (VR) devices and analyze the requirements for light engines. Our guidelines for mLED backlit LCDs have been widely practiced in direct-view displays. Similarly, the newly established criteria for light engines will shed new light to guide future VR display development. To improve the optical efficiency of near eye displays, we must optimize each component. For the light engine, we focus on color-converted micro-LED microdisplays. We fabricate a pixelated cholesteric liquid crystal film on top of a pixelated QD array to recycle the leaked blue light, which in turn doubles the optical efficiency and widens the color gamut. In Chapter 5, we tailor the radiation pattern of the light engine to match the etendue of the imaging systems, as a result, the power loss in the projection process is greatly reduced. The system efficiency is enhanced by over one-third for both organic light-emitting diode (OLED) displays and LCDs while maintaining indistinguishable image nonuniformity. In Chapter 6, we briefly summarize our major accomplishments
    corecore