1,008 research outputs found

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data

    Get PDF
    Recent years have seen the rise of more sophisticated attacks including advanced persistent threats (APTs) which pose severe risks to organizations and governments by targeting confidential proprietary information. Additionally, new malware strains are appearing at a higher rate than ever before. Since many of these malware are designed to evade existing security products, traditional defenses deployed by most enterprises today, e.g., anti-virus, firewalls, intrusion detection systems, often fail at detecting infections at an early stage. We address the problem of detecting early-stage infection in an enterprise setting by proposing a new framework based on belief propagation inspired from graph theory. Belief propagation can be used either with "seeds" of compromised hosts or malicious domains (provided by the enterprise security operation center -- SOC) or without any seeds. In the latter case we develop a detector of C&C communication particularly tailored to enterprises which can detect a stealthy compromise of only a single host communicating with the C&C server. We demonstrate that our techniques perform well on detecting enterprise infections. We achieve high accuracy with low false detection and false negative rates on two months of anonymized DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of real-world web proxy logs collected at the border of a large enterprise. Through careful manual investigation in collaboration with the enterprise SOC, we show that our techniques identified hundreds of malicious domains overlooked by state-of-the-art security products

    Spatiotemporal Patterns and Predictability of Cyberattacks

    Get PDF
    Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Spatiotemporal patterns and predictability of cyberattacks

    Full text link
    A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term "spatio" refers to the IP address space. In particular, we focus on analyzing {\em macroscopic} properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack "fingerprints" and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches
    • …
    corecore