4,686 research outputs found

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    Survey on the use of computational optimisation in UK engineering companies

    Get PDF
    The aim of this work is to capture current practices in the use of computational optimisation in UK engineering companies and identify the current challenges and future needs of the companies. To achieve this aim, a survey was conducted from June 2013 to August 2013 with 17 experts and practitioners from power, aerospace and automotive Original Equipment Manufacturers (OEMs), steel manufacturing sector, small- and medium-sized design, manufacturing and consultancy companies, and optimisation software vendors. By focusing on practitioners in industry, this work complements current surveys in optimisation that have mainly focused on published literature. This survey was carried out using a questionnaire administered through face-to-face interviews lasting around 2 h with each participant. The questionnaire covered 5 main topics: (i) state of optimisation in industry, (ii) optimisation problems, (iii) modelling techniques, (iv) optimisation techniques, and (v) challenges faced and future research areas. This survey identified the following challenges that the participant companies are facing in solving optimisation problems: large number of objectives and variables, availability of computing resources, data management and data mining for optimisation workflow, over-constrained problems, too many algorithms with limited help in selection, and cultural issues including training and mindset. The key areas for future research suggested by the participant companies are as follows: handling large number of variables, objectives and constraints particularly when solution robustness is important, reducing the number of iterations and evaluations, helping the users in algorithm selection and business case for optimisation, sharing data between different disciplines for multi-disciplinary optimisation, and supporting the users in model development and post-processing through design space visualisation and data mining

    Efficiency Analysis of Swarm Intelligence and Randomization Techniques

    Full text link
    Swarm intelligence has becoming a powerful technique in solving design and scheduling tasks. Metaheuristic algorithms are an integrated part of this paradigm, and particle swarm optimization is often viewed as an important landmark. The outstanding performance and efficiency of swarm-based algorithms inspired many new developments, though mathematical understanding of metaheuristics remains partly a mystery. In contrast to the classic deterministic algorithms, metaheuristics such as PSO always use some form of randomness, and such randomization now employs various techniques. This paper intends to review and analyze some of the convergence and efficiency associated with metaheuristics such as firefly algorithm, random walks, and L\'evy flights. We will discuss how these techniques are used and their implications for further research.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1212.0220, arXiv:1208.0527, arXiv:1003.146
    • …
    corecore