1,315 research outputs found

    A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons

    Get PDF
    Spiking neurons are becoming increasingly popular owing to their biological plausibility and promising computational properties. Unlike traditional rate-based neural models, spiking neurons encode information in the temporal patterns of the transmitted spike trains, which makes them more suitable for processing spatiotemporal information. One of the fundamental computations of spiking neurons is to transform streams of input spike trains into precisely timed firing activity. However, the existing learning methods, used to realize such computation, often result in relatively low accuracy performance and poor robustness to noise. In order to address these limitations, we propose a novel highly effective and robust membrane potential-driven supervised learning (MemPo-Learn) method, which enables the trained neurons to generate desired spike trains with higher precision, higher efficiency, and better noise robustness than the current state-of-the-art spiking neuron learning methods. While the traditional spike-driven learning methods use an error function based on the difference between the actual and desired output spike trains, the proposed MemPo-Learn method employs an error function based on the difference between the output neuron membrane potential and its firing threshold. The efficiency of the proposed learning method is further improved through the introduction of an adaptive strategy, called skip scan training strategy, that selectively identifies the time steps when to apply weight adjustment. The proposed strategy enables the MemPo-Learn method to effectively and efficiently learn the desired output spike train even when much smaller time steps are used. In addition, the learning rule of MemPo-Learn is improved further to help mitigate the impact of the input noise on the timing accuracy and reliability of the neuron firing dynamics. The proposed learning method is thoroughly evaluated on synthetic data and is further demonstrated on real-world classification tasks. Experimental results show that the proposed method can achieve high learning accuracy with a significant improvement in learning time and better robustness to different types of noise

    An Efficient Threshold-Driven Aggregate-Label Learning Algorithm for Multimodal Information Processing

    Get PDF
    The aggregate-label learning paradigm tackles the long-standing temporary credit assignment (TCA) problem in neuroscience and machine learning, enabling spiking neural networks to learn multimodal sensory clues with delayed feedback signals. However, the existing aggregate-label learning algorithms only work for single spiking neurons, and with low learning efficiency, which limit their real-world applicability. To address these limitations, we first propose an efficient threshold-driven plasticity algorithm for spiking neurons, namely ETDP. It enables spiking neurons to generate the desired number of spikes that match the magnitude of delayed feedback signals and to learn useful multimodal sensory clues embedded within spontaneous spiking activities. Furthermore, we extend the ETDP algorithm to support multi-layer spiking neural networks (SNNs), which significantly improves the applicability of aggregate-label learning algorithms. We also validate the multi-layer ETDP learning algorithm in a multimodal computation framework for audio-visual pattern recognition. Experimental results on both synthetic and realistic datasets show significant improvements in the learning efficiency and model capacity over the existing aggregate-label learning algorithms. It, therefore, provides many opportunities for solving real-world multimodal pattern recognition tasks with spiking neural networks

    Learning to Recognize Actions from Limited Training Examples Using a Recurrent Spiking Neural Model

    Full text link
    A fundamental challenge in machine learning today is to build a model that can learn from few examples. Here, we describe a reservoir based spiking neural model for learning to recognize actions with a limited number of labeled videos. First, we propose a novel encoding, inspired by how microsaccades influence visual perception, to extract spike information from raw video data while preserving the temporal correlation across different frames. Using this encoding, we show that the reservoir generalizes its rich dynamical activity toward signature action/movements enabling it to learn from few training examples. We evaluate our approach on the UCF-101 dataset. Our experiments demonstrate that our proposed reservoir achieves 81.3%/87% Top-1/Top-5 accuracy, respectively, on the 101-class data while requiring just 8 video examples per class for training. Our results establish a new benchmark for action recognition from limited video examples for spiking neural models while yielding competetive accuracy with respect to state-of-the-art non-spiking neural models.Comment: 13 figures (includes supplementary information

    Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition

    Get PDF
    A neuromorphic chip that combines CMOS analog spiking neurons and memristive synapses offers a promising solution to brain-inspired computing, as it can provide massive neural network parallelism and density. Previous hybrid analog CMOS-memristor approaches required extensive CMOS circuitry for training, and thus eliminated most of the density advantages gained by the adoption of memristor synapses. Further, they used different waveforms for pre and post-synaptic spikes that added undesirable circuit overhead. Here we describe a hardware architecture that can feature a large number of memristor synapses to learn real-world patterns. We present a versatile CMOS neuron that combines integrate-and-fire behavior, drives passive memristors and implements competitive learning in a compact circuit module, and enables in-situ plasticity in the memristor synapses. We demonstrate handwritten-digits recognition using the proposed architecture using transistor-level circuit simulations. As the described neuromorphic architecture is homogeneous, it realizes a fundamental building block for large-scale energy-efficient brain-inspired silicon chips that could lead to next-generation cognitive computing.Comment: This is a preprint of an article accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol 5, no. 2, June 201

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    A Synapse-Threshold Synergistic Learning Approach for Spiking Neural Networks

    Full text link
    Spiking neural networks (SNNs) have demonstrated excellent capabilities in various intelligent scenarios. Most existing methods for training SNNs are based on the concept of synaptic plasticity; however, learning in the realistic brain also utilizes intrinsic non-synaptic mechanisms of neurons. The spike threshold of biological neurons is a critical intrinsic neuronal feature that exhibits rich dynamics on a millisecond timescale and has been proposed as an underlying mechanism that facilitates neural information processing. In this study, we develop a novel synergistic learning approach that simultaneously trains synaptic weights and spike thresholds in SNNs. SNNs trained with synapse-threshold synergistic learning (STL-SNNs) achieve significantly higher accuracies on various static and neuromorphic datasets than SNNs trained with two single-learning models of the synaptic learning (SL) and the threshold learning (TL). During training, the synergistic learning approach optimizes neural thresholds, providing the network with stable signal transmission via appropriate firing rates. Further analysis indicates that STL-SNNs are robust to noisy data and exhibit low energy consumption for deep network structures. Additionally, the performance of STL-SNN can be further improved by introducing a generalized joint decision framework (JDF). Overall, our findings indicate that biologically plausible synergies between synaptic and intrinsic non-synaptic mechanisms may provide a promising approach for developing highly efficient SNN learning methods.Comment: 13 pages, 9 figures, submitted for publicatio
    corecore