4 research outputs found

    A high performance hardware architecture for one bit transform based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. One bit transform (IBT) based ME algorithms have low computational complexity. Therefore, in this paper, we propose a high performance systolic hardware architecture for IBT based ME. The proposed hardware performs full search ME for 4 Macroblocks in parallel and it is the fastest IBT based ME hardware reported in the literature. In addition, it uses less on-chip memory than the previous IBT based ME hardware by using a novel data reuse scheme and memory organization. The proposed hardware is implemented in Verilog HDL. It consumes %34 of the slices in a Xilinx XC2VP30-7 FPGA. It works at 115 MHz in the same FPGA and is capable of processing 50 1920x1080 full High Definition frames per second. Therefore, it can be used in consumer electronics products that require real-time video processing or compression

    A high performance hardware for early terminated C-1BT based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression systems. In this paper, a high performance hardware for early terminated constrained one-bit transform (C-1BT) based low bit depth ME is proposed. The proposed early terminated C-1BT based ME hardware can process more than 30 quad full HD (3840×2160) video frames per second. The early termination algorithm reduced the energy consumption of the proposed ME hardware by 26%

    High performance hardware architectures for one bit transform based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive and most power consuming part of video compression and video enhancement systems. ME is used in video compression standards such as MPEG4, H.264 and it is used in video enhancement algorithms such as frame rate conversion and de-interlacing. One bit transform (1BT) based ME algorithms have low computational complexity. Therefore, in this thesis, we propose high performance hardware architectures for 1BT based fixed block size (FBS) single reference frame (SRF) ME, variable block size (VBS) SRF ME, and multiple reference frame (MRF) ME. Constraint One Bit Transform (C-1BT) ME algorithm improves the ME performance of 1BT ME, and the early terminated C-1BT ME algorithm reduces the computational complexity of C-1BT ME. Therefore, in this thesis, we also propose a high performance early terminated C-1BT ME hardware architecture. The proposed FBS SRF ME hardware architectures perform full search ME for 4 Macroblocks in parallel and they are faster than the 1BT based ME hardware reported in the literature. In addition, they use less on-chip memory than the previous 1BT based ME hardware by using a novel data reuse scheme and memory organization. The proposed VBS SRF ME and MRF ME hardware architectures are the first 1BT based VBS ME and MRF ME hardware architectures in the literature. The proposed MRF ME hardware is designed as reconfigurable in order to statically configure the number and selection of reference frames based on the application requirements. The proposed early terminated C-1BT ME hardware architecture is the first early terminated C-1BT ME hardware architecture in the literature. All of the proposed ME hardware architectures are implemented in Verilog HDL and mapped to Xilinx FPGAs. All FPGA implementations are verified with post place & route simulations

    Real-Time High-Resolution Multiple-Camera Depth Map Estimation Hardware and Its Applications

    Get PDF
    Depth information is used in a variety of 3D based signal processing applications such as autonomous navigation of robots and driving systems, object detection and tracking, computer games, 3D television, and free view-point synthesis. These applications require high accuracy and speed performances for depth estimation. Depth maps can be generated using disparity estimation methods, which are obtained from stereo matching between multiple images. The computational complexity of disparity estimation algorithms and the need of large size and bandwidth for the external and internal memory make the real-time processing of disparity estimation challenging, especially for high resolution images. This thesis proposes a high-resolution high-quality multiple-camera depth map estimation hardware. The proposed hardware is verified in real-time with a complete system from the initial image capture to the display and applications. The details of the complete system are presented. The proposed binocular and trinocular adaptive window size disparity estimation algorithms are carefully designed to be suitable to real-time hardware implementation by allowing efficient parallel and local processing while providing high-quality results. The proposed binocular and trinocular disparity estimation hardware implementations can process 55 frames per second on a Virtex-7 FPGA at a 1024 x 768 XGA video resolution for a 128 pixel disparity range. The proposed binocular disparity estimation hardware provides best quality compared to existing real-time high-resolution disparity estimation hardware implementations. A novel compressed-look up table based rectification algorithm and its real-time hardware implementation are presented. The low-complexity decompression process of the rectification hardware utilizes a negligible amount of LUT and DFF resources of the FPGA while it does not require the existence of external memory. The first real-time high-resolution free viewpoint synthesis hardware utilizing three-camera disparity estimation is presented. The proposed hardware generates high-quality free viewpoint video in real-time for any horizontally aligned arbitrary camera positioned between the leftmost and rightmost physical cameras. The full embedded system of the depth estimation is explained. The presented embedded system transfers disparity results together with synchronized RGB pixels to the PC for application development. Several real-time applications are developed on a PC using the obtained RGB+D results. The implemented depth estimation based real-time software applications are: depth based image thresholding, speed and distance measurement, head-hands-shoulders tracking, virtual mouse using hand tracking and face tracking integrated with free viewpoint synthesis. The proposed binocular disparity estimation hardware is implemented in an ASIC. The ASIC implementation of disparity estimation imposes additional constraints with respect to the FPGA implementation. These restrictions, their implemented efficient solutions and the ASIC implementation results are presented. In addition, a very high-resolution (82.3 MP) 360°x90° omnidirectional multiple camera system is proposed. The hemispherical camera system is able to view the target locations close to horizontal plane with more than two cameras. Therefore, it can be used in high-resolution 360° depth map estimation and its applications in the future
    corecore