7,033 research outputs found

    Data clustering using a model granular magnet

    Full text link
    We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures it is completely ordered; all spins are aligned. At very high temperatures the system does not exhibit any ordering and in an intermediate regime clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.Comment: 46 pages, postscript, 15 ps figures include

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    A New Algorithm for Exploratory Projection Pursuit

    Full text link
    In this paper, we propose a new algorithm for exploratory projection pursuit. The basis of the algorithm is the insight that previous approaches used fairly narrow definitions of interestingness / non interestingness. We argue that allowing these definitions to depend on the problem / data at hand is a more natural approach in an exploratory technique. This also allows our technique much greater applicability than the approaches extant in the literature. Complementing this insight, we propose a class of projection indices based on the spatial distribution function that can make use of such information. Finally, with the help of real datasets, we demonstrate how a range of multivariate exploratory tasks can be addressed with our algorithm. The examples further demonstrate that the proposed indices are quite capable of focussing on the interesting structure in the data, even when this structure is otherwise hard to detect or arises from very subtle patterns.Comment: 29 pages, 8 figure
    • …
    corecore